Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers move 2 steps closer to understanding genetic underpinnings of autism

14.01.2008
Reports from 3 groups validate earlier finding

Today’s issue of the American Journal of Human Genetics (AJHG), describes what might be a corner piece of the autism puzzle—the identification and subsequent validation of a gene linked to the development of autism by three separate groups of scientists. An accompanying commentary by Dr. Dietrich Stephan, Director of the Neurogenomics Division at the Translational Genomics Research Institute’s (TGen), further explains the findings.

Autism is a perplexing disease whose cause remains unexplained. It has long been suggested that environmental factors, linked with genetics, play a role in causing the disorder. As recently as last week, researchers in California published a study that found no proof linking autism with a mercury-based preservative found in childhood vaccines. While there are no clear-cut answers, researchers are one step closer to understanding autism’s genetic cause.

In March 2006, Dr. Stephan, Director of TGen’s Neurogenomics Division, led a team of researchers at TGen and collaborators at the Clinic for Special Children (CSC) in Strasburg, PA, that identified a gene called CNTNAP2. When mutated, this gene indicated a predisposition to autism in a specific population of Old Order Amish children from Pennsylvania.

... more about:
»ASD »CNTNAP2 »Diagnostic »SARRC »TGen »disorder »initial

One of the most important principles in science is the ability to replicate results. Now, three groups of researchers from Yale University, the University of California, Los Angeles, and the Johns Hopkins University, have replicated the initial finding in the general population, unequivocally implicating this gene as causing the newly defined Type 1 autism. All three studies plus Dr. Stephan’s commentary are published in the January edition of AJHG.

According to Dr. Erik Puffenberger, Laboratory Director of the Clinic for Special Children, “Our previous finding of association between loss of CNTNAP2 function and autistic behavior has been validated in the general population. This is a very exciting step for autism research. It also highlights the enormous potential of the ‘small science’ approach. Our initial work used only four affected Amish children. Careful study of these four patients uncovered the association between CNTNAP2 and autistic behaviors. From that small beginning, CNTNAP2 has now been implicated as a significant risk factor for autism.”

Autism spectrum disorder (ASD) is a broadly used term for a set of developmental disorders that emerges in infants and young children. ASD impairs a child's intuitive thought, language and social development to varying degrees. Most individuals diagnosed with ASD require lifelong supervision and care; the most severely affected are unable to speak. ASD is the fastest growing developmental disability in the U.S. Two decades ago, roughly one child in 10,000 was diagnosed with ASD; it now affects one in 150 births.

“The field of genetics is replete with examples where researchers are unable to reproduce results. Here we have independent confirmation in multiple groups using large samples sizes,” said Dr. Stephan. “Now that the results of the initial CNTNAP2 gene finding have been replicated, it strongly supports the notion that the ‘broken version’ of CNTNAP2 is recognized as a cause of autism in the general population.”

In collaboration with the Phoenix-based Southwest Autism Research & Resource Center (SARRC), a nonprofit community-based organization dedicated to research, education and resources for individuals with ASDs and their families, TGen will apply these research findings to children in Arizona who have been diagnosed with ASD.

“The heterogeneity of the disorder has frustrated our past efforts in the search for causes of autism,” said Dr. Raun Melmed, medical director and co-founder of SARRC. “This exciting discovery will further our capacity to individualize approaches to the diagnosis and treatment of autism.”

The next step, noted Dr. Stephan in the commentary, is to develop a diagnostic to test for the CNTNAP2 mutation. If physicians could implement behavioral interventions early enough, children with autism may have a better chance of developing normally.

The initial discovery of CNTNAP2 in autism was published in the March 30, 2006, issue of the New England Journal of Medicine.

About TGen

The Translational Genomics Research Institute (TGen) is a non-profit 501(c)(3) organization focused on developing earlier diagnostics and smarter treatments. Translational genomics research is a relatively new field employing innovative advances arising from the Human Genome Project and applying them to the development of diagnostics, prognostics and therapies for cancer, neurological disorders, diabetes and other complex diseases. TGen's research is based on personalized medicine. The institute plans to accomplish its goals through robust and disease-focused research.

About the Clinic For Special Children

The Clinic for Special Children was established in 1989 to provide early diagnosis, affordable laboratory services, and comprehensive medical and nutritional care for Old Order Amish and Mennonite children that suffer from genetic disorders. The clinic mission encompasses four aims: 1) Make high-quality medical care for special children accessible, affordable, and culturally effective; 2) Develop comprehensive methods of newborn screening and follow-up care for genetic disorders prevalent among the Plain people; 3) Develop practical clinical applications for modern molecular genetic technologies; and 4) Elucidate disease mechanisms for the purpose of improving patient treatment and outcome. Clinical work at the CSC is funded by private donations from individuals, foundation contributions, and an endowment fund established for this purpose. Many collaborating scientists and laboratories donate specialized services. The CSC receives no money from state or federal sources and is a private non-profit 501(c)(3) charitable institution.

About SARRC

Founded in 1997, the Southwest Autism Research & Resource Center (SARRC) is a nonprofit, community-based organization dedicated to autism research, education and resources for children and young adults with autism spectrum disorders (ASDs) and their families. SARRC undertakes self-directed and collaborative research projects, serves as a satellite site for national and international projects, and provides up-to-date information, training and assistance to families and professionals about ASDs. For more information about SARRC, call (602) 340-8717 or visit www.autismcenter.org.

Amy Erickson | EurekAlert!
Further information:
http://www.tgen.org
http://www.autismcenter.org

Further reports about: ASD CNTNAP2 Diagnostic SARRC TGen disorder initial

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>