Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lend me your ears - and the world will sound very different

14.01.2008
Recognising people, objects or animals by the sound they make is an important survival skill and something most of us take for granted. But very similar objects can physically make very dissimilar sounds and we are able to pick up subtle clues about the identity and source of the sound.

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) are working out how the human ear and the brain come together to help us understand our acoustic environment. They have found that the part of the brain that deals with sound, the auditory cortex, is adapted in each individual and tuned to the world around us. We learn throughout our lives how to localise and identify different sounds. It means that if you could hear the world through someone else's ears it would sound very different to what you are used to.

The research, which features in the current issue of BBSRC Business, could help to develop more sophisticated hearing aids and more effective speech recognition systems.

The research team at the University of Oxford, led by Dr Jan Schnupp, have studied the auditory cortex of the brain and discovered that its responses are determined not merely by acoustical properties, like frequency and pitch, but by statistical properties of the sound-scape. In the world loudness and pitch are constantly changing. The random shifts in sounds are underpinned with a statistical regularity. For example, subtle and gradual changes are statistically more regular than large and sudden changes. Dr Schnupp's team have found that our brains are adapted to the former; the neurons in the auditory cortex appear to anticipate and respond best to gradual changes in the soundscape. These are also the patterns most commonly found in both nature and musical compositions.

... more about:
»Cortex »Schnupp »auditory »neurons

Dr Schnupp, a research leader at the University of Oxford Auditory Neuroscience Group, said: "Our research to model speech sounds in the lab has shown that auditory neurons in the brain are adaptable and we learn how to locate and identify sounds. Each person's auditory cortex in their brain is adapted to way their ears deliver sound to them and their experience of the world. If you could borrow someone else's ears you would have real difficulty in locating the source of sounds, at least until your brain had relearned how to do it."

Dr Schnupp has also found that the auditory cortex does not have neurons sensitive to different aspects of sound. When the researchers look at how the auditory cortex responds to changes in pitch, timbre and frequency they saw that most neurons reacted to each change. Dr Schnupp explains: "In the closely related visual cortex there are different neurons for processing colour, form and motion. In the auditory cortex the neurons seem to overwhelmingly react to several of the different properties of sound. We are now investigating how they distinguish between pitch, spatial location and timbre.

"If we can understand how the auditory cortex has evolved to do this we may be able to apply the knowledge to develop hearing aids that can blot out background noise and speech recognition systems that can handle different accents."

The Oxford team's current project is using BBSRC funding to fit trained ferrets with harmless auditory implants. The animals are trained to respond to different sounds and the implants enable the team to observe the auditory neurons as the ferret responds to different sounds.

Professor Nigel Brown, BBSRC Director of Science and Technology, said: "This research is revealing how our senses work and how the brain interprets information from the ears. These BBSRC-funded studies of a fundamental biological process may bring exciting developments in helping people with hearing and other disabilities."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cortex Schnupp auditory neurons

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>