Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lend me your ears - and the world will sound very different

14.01.2008
Recognising people, objects or animals by the sound they make is an important survival skill and something most of us take for granted. But very similar objects can physically make very dissimilar sounds and we are able to pick up subtle clues about the identity and source of the sound.

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) are working out how the human ear and the brain come together to help us understand our acoustic environment. They have found that the part of the brain that deals with sound, the auditory cortex, is adapted in each individual and tuned to the world around us. We learn throughout our lives how to localise and identify different sounds. It means that if you could hear the world through someone else's ears it would sound very different to what you are used to.

The research, which features in the current issue of BBSRC Business, could help to develop more sophisticated hearing aids and more effective speech recognition systems.

The research team at the University of Oxford, led by Dr Jan Schnupp, have studied the auditory cortex of the brain and discovered that its responses are determined not merely by acoustical properties, like frequency and pitch, but by statistical properties of the sound-scape. In the world loudness and pitch are constantly changing. The random shifts in sounds are underpinned with a statistical regularity. For example, subtle and gradual changes are statistically more regular than large and sudden changes. Dr Schnupp's team have found that our brains are adapted to the former; the neurons in the auditory cortex appear to anticipate and respond best to gradual changes in the soundscape. These are also the patterns most commonly found in both nature and musical compositions.

... more about:
»Cortex »Schnupp »auditory »neurons

Dr Schnupp, a research leader at the University of Oxford Auditory Neuroscience Group, said: "Our research to model speech sounds in the lab has shown that auditory neurons in the brain are adaptable and we learn how to locate and identify sounds. Each person's auditory cortex in their brain is adapted to way their ears deliver sound to them and their experience of the world. If you could borrow someone else's ears you would have real difficulty in locating the source of sounds, at least until your brain had relearned how to do it."

Dr Schnupp has also found that the auditory cortex does not have neurons sensitive to different aspects of sound. When the researchers look at how the auditory cortex responds to changes in pitch, timbre and frequency they saw that most neurons reacted to each change. Dr Schnupp explains: "In the closely related visual cortex there are different neurons for processing colour, form and motion. In the auditory cortex the neurons seem to overwhelmingly react to several of the different properties of sound. We are now investigating how they distinguish between pitch, spatial location and timbre.

"If we can understand how the auditory cortex has evolved to do this we may be able to apply the knowledge to develop hearing aids that can blot out background noise and speech recognition systems that can handle different accents."

The Oxford team's current project is using BBSRC funding to fit trained ferrets with harmless auditory implants. The animals are trained to respond to different sounds and the implants enable the team to observe the auditory neurons as the ferret responds to different sounds.

Professor Nigel Brown, BBSRC Director of Science and Technology, said: "This research is revealing how our senses work and how the brain interprets information from the ears. These BBSRC-funded studies of a fundamental biological process may bring exciting developments in helping people with hearing and other disabilities."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cortex Schnupp auditory neurons

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>