Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules can block breast cancer's ability to spread

11.01.2008
Researchers have identified a specific group of microRNA molecules that are responsible for controlling genes that cause breast cancer metastasis. The study, led by scientists at Memorial Sloan-Kettering Cancer Center (MSKCC), appears in the January 10, 2008, issue of Nature.

MicroRNAs are known to inhibit the activity of entire sets of genes associated with cancer metastasis – a process that leads to the majority of cancer-related deaths. The new work explains how the loss of certain microRNAs allows cancer cells to migrate through organ tissue and to grow more rapidly.

The researchers examined human breast cancer cells with strong metastatic ability and found that the cells had lost large numbers of three different microRNA molecules. Conversely, when researchers put those molecules back into human breast cancer tumors in mice, the tumors lost their ability to spread.

In addition, the researchers looked at breast cancer patients and discovered that those with tumors that had lost these molecules were much more likely to suffer from cancer metastasis to the lung and bone.

... more about:
»MicroRNA »ability »genes »metastasis

“The identification of molecules that inhibit a cell’s metastatic potential may help guide clinical decision-making in the future by enabling oncologists to more accurately identify patients at highest risk for metastatic relapse,” said the study’s lead author Sohail Tavazoie, MD, PhD, a postdoctoral fellow in the Oncology-Hematology Fellowship program at MSKCC.

In further analyzing one of these microRNAs, called miR-335, investigators found that miR-335 works by suppressing certain genes that are associated with human metastasis, particularly SOX4, which acts as a transcription factor (meaning that it regulates a group of genes responsible for cell development and migration), and tenascin-C, which functions outside the cell in what is called the extracellular matrix and is implicated in cell migration.

“We now have a better understanding of the role this molecular pathway plays as a suppressor of breast cancer’s ability to spread to the lung and bone, and we have identified the genes involved in that process. These findings may enhance our ability to come up with more effective drugs to prevent or treat cancer metastasis,” said Joan Massagué, PhD, Chair of the Cancer Biology and Genetics Program at MSKCC, a Howard Hughes Medical Institute Investigator, and the study’s senior author.

Esther Napolitano | EurekAlert!
Further information:
http://www.mskcc.org

Further reports about: MicroRNA ability genes metastasis

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>