Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epigenetics : Asf1, the protein that oversees DNA replication and packaging in the cell

11.01.2008
At the Institut Curie, the CNRS team of Geneviève Almouzni(1) has just discovered how the protein Asf1 ensures the correct (re)organization of duplicated DNA.

During DNA replication, all the information in the mother cell must be transmitted to the daughter cells. The DNA must be faithfully copied, of course, but also properly organized within the cell. DNA is wrapped around proteins called histones, to form chromatin.

This complex structure contains so-called epigenetic information, which governs gene expression and gives each cell its specific identity. The histone chaperone, Asf1, coordinates the removal of histones from the chromatin to allow the replication machinery to move along the DNA, with the supply of new histones to reform the chromatin once the replication machinery has passed. This discovery sheds new light on the transmission of epigenetic information in cells, and was published in the 21 December 2007 issue of Science.

DNA inherited from both parents is copied during each cell division and transmitted to all cells. Each of our cells therefore contains the same genetic information. So, what is the difference between a neuron and a white blood cell? The difference lies in the fact that although every cell in our body has the same number of genes, only some of these genes are active in any given cell. Depending on cell type, certain genes are “locked” to prevent their expression. Information on the locking and unlocking of genes is essential for cell function, and is not carried in the genes themselves but by epigenetic factors. These can be chemical modifications(2) or the organization of the DNA within the cell. The DNA double helix (diameter 2 nanometers) is wrapped around histones, proteins that facilitate its compaction, to form nucleosomes, which are strung along the DNA like beads on a string. This bead necklace then folds on itself to form a fiber—chromatin.

... more about:
»Asf1 »Chromatin »DNA »Histone »epigenetic »replication

When a cell divides to give rise to two daughter cells, the DNA-replicating machinery unfolds the chromatin as it moves along the DNA strands. Once the so-called replication fork (the structure that forms during DNA replication) has passed, both the DNA and the epigenetic factors must be repositioned. The “Chromatin Dynamics” team of Geneviève Almouzni (UMR 218 CNRS/Institut Curie) has now shown that the histone chaperone, the protein ASF-1, regulates the progression of the replication fork, and handles the supply and demand of histones during this process essential to cell life. Asf1 oversees the removal of old histones upstream of the replication fork, and their recycling, together with the supply of newly synthesized histones to the DNA daughter strands. In so doing, Asf1 collaborates with MCM2-7, a protein complex that opens the DNA strands to allow the replication fork to advance. Asf1 therefore plays a key role in replication during cell division by coordinating the recycling of old histones and the incorporation of newly synthesized histones.

This discovery clarifies the relation between duplication of the genetic material and transmission of information carried by the histones during cell division. Any alterations occurring in the DNA or chromatin may compromise the development of an organism or play a part in cell aging, or even in the occurrence of cancer. This discovery sheds new light on the role of epigenetics in cancer development.

Céline Giustranti | alfa
Further information:
http://www.sciencemag.org/magazine.dtl
http://www.curie.fr

Further reports about: Asf1 Chromatin DNA Histone epigenetic replication

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>