Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why it pays to be choosy

10.01.2008
Cooperative behaviour is common in many species, including humans. Given that cooperative individuals can often be exploited, it is not immediately clear why such behaviour has evolved.

A novel solution to this problem has been proposed by scientists at the University of Bristol and is published today in Nature.

Professor John McNamara and colleagues demonstrate that when individuals in a population are choosy about their partners, cooperativeness is rewarded and tends to increase.

Professor McNamara explained: “The problem is that the process of natural selection tends to produce individuals that do the best for themselves. So why has a behaviour evolved that appears to benefit others at a cost to the individual concerned?

... more about:
»Trait »choosiness »cooperative

“In our model, an individual’s level of choosiness determines the level of cooperation demanded of its partner. If the current partner is not cooperative enough the individual stops interacting with this partner and seeks a better partner, even though finding a new partner incurs costs.”

So when is it worth leaving the current partner and seeking a more cooperative one? Two components are necessary for this to be beneficial:

•There must be better partners out there.

•There must also be time to exploit the relationship with the new partner, which will be true for long-lived animals like humans.

If these conditions are met, natural selection will lead to a certain degree of choosiness evolving. And once this happens, an individual that is not cooperative will be discarded by its partner and must pay the cost of finding another partner.

Thus when there is choosiness, cooperativeness is rewarded and tends to increase. In this way the level of cooperation and the degree of choosiness increase together over time, and cooperation can evolve from an initially uncooperative population.

This research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Deutsche Forschungsgemeinschaft. Professor Nigel Brown, Director of Science and Technology at BBSRC, commented: “This is one of a number of fields where modelling studies are advancing biological science more rapidly than experiment alone can achieve.”

In a computational model, the team considered a large population where, in each of a discrete series of time steps, pairs of individuals engage in a ‘game’ in which each individual does best by being uncooperative and letting its partner put in the hard work.

Each individual was characterised by two traits: a cooperativeness trait, which specifies the amount of effort that the individual devotes to generating benefits available to its co-player, and a choosiness trait, which specifies the minimum degree of cooperativeness that the individual is prepared to accept from its co-player. The traits are not adjusted in response to the co-player’s behaviour and do not change over an individual’s life.

As this model does not require complex procedures such as negotiation, it could be relevant to a wide range of species.

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

Further reports about: Trait choosiness cooperative

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>