Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight Into Factors That Drive Muscle-Building Stem Cells

09.01.2008
A report in the January issue of Cell Metabolism, a publication of Cell Press, provides new evidence explaining how stem cells known as satellite cells contribute to building muscles up in response to exercise.

These findings could lead to treatments for reversing or improving the muscle loss that occurs in diseases such as cancer and AIDS as well as in the normal aging process, according to the researchers.

Researchers from the Centre for Genomic Regulation (CRG) in Barcelona, Spain, showed that a transient and local rise in an inflammatory signal, the cytokine known as interleukin-6 (IL-6), is essential for the growth of muscle fibers. The findings offer the first clear mechanism for the stem cells’ incorporation into muscle and the first evidence linking a cytokine to this process, said Pura Muñoz-Cánoves, researcher at the CRG. “As we learn more about how muscles grow in adults, we may uncover new methods for restoring lost muscle mass in the elderly and ill,” she added.

Skeletal muscles are made up of individual myofibers, each with many nuclei containing genetic material. As muscles are made to work harder, they adapt by bulking up each of those individual fibers, the researchers explained, but the mechanisms responsible have largely remained elusive.

... more about:
»CRG »Cell »IL-6 »Muñoz-Cánoves »myofiber

Mounting evidence has shown that the growth of myofibers is limited by the need to maintain an equilibrium between the number of nuclei and the fibers’ overall volume. Because mature myofibers are incapable of cell division, new nuclei must be supplied by satellite cells (muscle stem cells). Once activated, satellite cells follow an ordered set of events, including proliferation, migration, and incorporation into the myofiber, leading to its growth.

Now, the researchers Antonio Serrano, Bernat Baeza, Eusebio Perdiguero and Mercè Jardí (from Pura Muñoz-Cánoves’ group at the CRG) have found that IL-6 is an essential regulator in that process. While IL-6 was virtually undetectable in the muscles of control mice, animals whose muscles were made to work harder showed an increase in IL-6 after one day. That cytokine rise was maintained for two weeks before it declined again.

Interestingly, systemically high levels of IL-6 had earlier been implicated in the muscle wasting process, Muñoz-Cánoves noted. “Having excess IL-6 is bad, but its local translation is required for muscle growth.”?Dr. Serrano further found that IL-6 was produced both within myofibers and in their associated satellite cells, leading to muscle growth. In contrast, the muscles of mice lacking IL-6 did not show any significant increase in size after several weeks of overloading. The researchers also showed that IL-6 exerts its effects by inducing the proliferation of satellite cells.

While Muñoz-Cánoves said that the findings are “just the beginning” of a new line of investigation into how adult muscle grows, she added that they might ultimately provide a new avenue for muscle-building therapies.?“Treatments could be designed to compensate for or block the pathways leading to muscle loss,” she said. “In muscles that have already lost mass, you might also be able to stimulate muscle growth.”

The researchers include Antonio L. Serrano, Bernat Baeza-Raja, Eusebio Perdiguero, Mercè Jardí, and Pura Muñoz-Cánoves, of the Program on Differentiation and Cancer, Centre for Genomic Regulation (CRG) in Barcelona and Center for Neurodegenerative Diseases (CIBERNED), Spain.

Gloria Lligadas | alfa
Further information:
http://www.cellmetabolism.org

Further reports about: CRG Cell IL-6 Muñoz-Cánoves myofiber

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>