Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life savers in the gut

09.01.2008
Proteins that regulate iron metabolism serve critical functions in nutrient and water absorption in the gut

Researchers from the European Molecular Biology Laboratory (EMBL) have discovered that proteins that regulate the body’s iron household play a vital role in making sure enough nutrients and water are absorbed in the intestine. Mice lacking these proteins suffer from weight loss and dehydration, the scientists report in the current issue of Cell Metabolism.

Iron is a central component of red blood cells and has many other important functions throughout the body. Since too little or too much iron is dangerous for our health a range of regulatory proteins tightly controls iron metabolism. EMBL scientists now assessed the role of two of these proteins, iron regulatory proteins 1 and 2 (IRPs), for the first time in living mice and found that their effects are much broader than previously assumed.

“We generated the first living organism lacking both IRPs in one of its organs,” says Bruno Galy, who carried out the research in the lab of Matthias Hentze at EMBL. “This was extremely challenging, because if both proteins are switched off throughout the whole body, the mouse dies before birth. But if you switch off only one IRP, the one that is still intact substitutes and you can hardly see any effects.”

... more about:
»Absorption »IRP »intestinal

Surprisingly, the lack of IRPs in the intestine did not upset the mice’s iron household in blood and tissues. Instead the mice suffered from other, unexpected problems: they weighed only half of their normal littermates, suffered from severe dehydration and died only 4 weeks after birth. The general nutrient and water absorption in the gut was impaired. A closer look at the intestinal tissues revealed that their structure and organisation were completely disturbed, which likely affects all absorption processes that happen in intestinal cells. The findings show that IRPs are essential for intestinal function and the survival of an organism, but the details of how they accomplish their effects is unclear.

Although the global iron household was unaffected by the lack of intestinal IRPs, the scientists observed changes in the local handling of iron in the gut. IRPs control the abundance of iron transporters in the membrane of intestinal cells. Without the IRPs less iron importers are found in the membrane facing the gut, but iron exporters on the interface with the blood stream are increased. The results are less iron absorption, but more export of the metal into the bloodstream. In the short term this will keep the global iron content stable while depleting the iron stores of intestinal cells, which could be the reason for their disturbed structure and tissue organisation.

“Since IRPs were discovered 20 years ago we have not been able to pin down what exactly they are doing,” says Matthias Hentze, Associate Director and group leader at EMBL. “The new insights provided by our mouse model greatly advance our understanding of their function in iron metabolism and reveal that IRPs play a vital role for the survival of an organism.”

The findings might help inform the development of strategies to control iron absorption in the intestine, which might pave the way for alternative therapeutic approaches to treat iron overload disorders such as hemochromatosis.

Published in Cell Metabolism on 8 January 2008.

Lena Raditsch | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/08jan08/
http://www.embl.org

Further reports about: Absorption IRP intestinal

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>