Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silver-rich Lumps

09.01.2008
Large cluster complexes with almost 500 silver atoms

Nanoscopic “lumps” of atoms, known as clusters, are the specialty of a research team headed by Dieter Fenske from the University of Karlsruhe and the Forschungszentrum Karlsruhe. The production and characterization of clusters made of interesting semiconductor materials are a main focus of this group.

As reported in the journal Angewandte Chemie, the team has now been able to synthesize four new, particularly large and silver-rich clusters, and to determine their crystal structures.

Two or three-dimensional nanostructures of semiconductor materials are of interest for future nanoelectronic applications. Such structures could be built of arrays of clusters. A cluster is an accumulation of atoms or molecules that includes hundreds or thousands of atoms. Tiny as they are, to some degree clusters have completely properties to those of “normal sized” (macroscopic) solid particles. This difference is caused by the high surface-to-volume ratio. In order to precisely interpret the measured physical properties of clusters, it is important to understand the atomic structure of these nanoparticles.

... more about:
»Atoms »structure

One of the things Fenske and his team are working on is the synthesis of metal-rich clusters of the elements sulfur, selenium, and tellurium (the chalcogens). For the metallic component in these systems, the coinage metals copper and silver are well suited. By using specially developed synthetic methods, the scientists were able to make molecular cluster complexes. In this process, cluster cores made of metal and chalcogen atoms are surrounded by a protective shell of organic ligands. This protective coat prevents the tiny lumps from aggregating into larger particles or solids. This trick made it possible for the researchers to make particularly large silver-rich clusters. The newest members of this family of clusters consist of distorted spherical silver-chalcogenide cores with diameters between two and four nanometers. Their surfaces are protected with thiolate or phosphane ligands.

Characterizing the structures of such large metal-rich cluster complexes by X-ray crystallographic studies is extremely difficult. It is actually impossible to determine the exact composition. Defects in the crystal lattice are one reason. The tendency to have defects increases as the number of silver atoms grows. However, by using a combination of X-ray diffraction, mass spectrometry, and electron microscopy, the researchers did succeed in deriving idealized empirical formulas and idealized atomic structures for their clusters. The most silver-rich compound consists of clusters with approximately 490 silver and 188 sulfur atoms, as well as 114 sulfur-organic ligands, and an idealized composition [Ag 490S188(StC5H11)114].

Author: Dieter Fenske, Universität Karlsruhe (Germany), http://www.aoc.uni-karlsruhe.de/english/380.php

Title: Synthesis and Crystal Structures of the Ligand-Stabilized Silver Chalcogenide Clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96] and [Ag490S188(StC5H11)114]

Angewandte Chemie International Edition, doi: 10.1002/anie.200704249

Dieter Fenske | Angewandte Chemie
Further information:
http://www.aoc.uni-karlsruhe.de/english/380.php

Further reports about: Atoms structure

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>