Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silver-rich Lumps

09.01.2008
Large cluster complexes with almost 500 silver atoms

Nanoscopic “lumps” of atoms, known as clusters, are the specialty of a research team headed by Dieter Fenske from the University of Karlsruhe and the Forschungszentrum Karlsruhe. The production and characterization of clusters made of interesting semiconductor materials are a main focus of this group.

As reported in the journal Angewandte Chemie, the team has now been able to synthesize four new, particularly large and silver-rich clusters, and to determine their crystal structures.

Two or three-dimensional nanostructures of semiconductor materials are of interest for future nanoelectronic applications. Such structures could be built of arrays of clusters. A cluster is an accumulation of atoms or molecules that includes hundreds or thousands of atoms. Tiny as they are, to some degree clusters have completely properties to those of “normal sized” (macroscopic) solid particles. This difference is caused by the high surface-to-volume ratio. In order to precisely interpret the measured physical properties of clusters, it is important to understand the atomic structure of these nanoparticles.

... more about:
»Atoms »structure

One of the things Fenske and his team are working on is the synthesis of metal-rich clusters of the elements sulfur, selenium, and tellurium (the chalcogens). For the metallic component in these systems, the coinage metals copper and silver are well suited. By using specially developed synthetic methods, the scientists were able to make molecular cluster complexes. In this process, cluster cores made of metal and chalcogen atoms are surrounded by a protective shell of organic ligands. This protective coat prevents the tiny lumps from aggregating into larger particles or solids. This trick made it possible for the researchers to make particularly large silver-rich clusters. The newest members of this family of clusters consist of distorted spherical silver-chalcogenide cores with diameters between two and four nanometers. Their surfaces are protected with thiolate or phosphane ligands.

Characterizing the structures of such large metal-rich cluster complexes by X-ray crystallographic studies is extremely difficult. It is actually impossible to determine the exact composition. Defects in the crystal lattice are one reason. The tendency to have defects increases as the number of silver atoms grows. However, by using a combination of X-ray diffraction, mass spectrometry, and electron microscopy, the researchers did succeed in deriving idealized empirical formulas and idealized atomic structures for their clusters. The most silver-rich compound consists of clusters with approximately 490 silver and 188 sulfur atoms, as well as 114 sulfur-organic ligands, and an idealized composition [Ag 490S188(StC5H11)114].

Author: Dieter Fenske, Universität Karlsruhe (Germany), http://www.aoc.uni-karlsruhe.de/english/380.php

Title: Synthesis and Crystal Structures of the Ligand-Stabilized Silver Chalcogenide Clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96] and [Ag490S188(StC5H11)114]

Angewandte Chemie International Edition, doi: 10.1002/anie.200704249

Dieter Fenske | Angewandte Chemie
Further information:
http://www.aoc.uni-karlsruhe.de/english/380.php

Further reports about: Atoms structure

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>