Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silver-rich Lumps

09.01.2008
Large cluster complexes with almost 500 silver atoms

Nanoscopic “lumps” of atoms, known as clusters, are the specialty of a research team headed by Dieter Fenske from the University of Karlsruhe and the Forschungszentrum Karlsruhe. The production and characterization of clusters made of interesting semiconductor materials are a main focus of this group.

As reported in the journal Angewandte Chemie, the team has now been able to synthesize four new, particularly large and silver-rich clusters, and to determine their crystal structures.

Two or three-dimensional nanostructures of semiconductor materials are of interest for future nanoelectronic applications. Such structures could be built of arrays of clusters. A cluster is an accumulation of atoms or molecules that includes hundreds or thousands of atoms. Tiny as they are, to some degree clusters have completely properties to those of “normal sized” (macroscopic) solid particles. This difference is caused by the high surface-to-volume ratio. In order to precisely interpret the measured physical properties of clusters, it is important to understand the atomic structure of these nanoparticles.

... more about:
»Atoms »structure

One of the things Fenske and his team are working on is the synthesis of metal-rich clusters of the elements sulfur, selenium, and tellurium (the chalcogens). For the metallic component in these systems, the coinage metals copper and silver are well suited. By using specially developed synthetic methods, the scientists were able to make molecular cluster complexes. In this process, cluster cores made of metal and chalcogen atoms are surrounded by a protective shell of organic ligands. This protective coat prevents the tiny lumps from aggregating into larger particles or solids. This trick made it possible for the researchers to make particularly large silver-rich clusters. The newest members of this family of clusters consist of distorted spherical silver-chalcogenide cores with diameters between two and four nanometers. Their surfaces are protected with thiolate or phosphane ligands.

Characterizing the structures of such large metal-rich cluster complexes by X-ray crystallographic studies is extremely difficult. It is actually impossible to determine the exact composition. Defects in the crystal lattice are one reason. The tendency to have defects increases as the number of silver atoms grows. However, by using a combination of X-ray diffraction, mass spectrometry, and electron microscopy, the researchers did succeed in deriving idealized empirical formulas and idealized atomic structures for their clusters. The most silver-rich compound consists of clusters with approximately 490 silver and 188 sulfur atoms, as well as 114 sulfur-organic ligands, and an idealized composition [Ag 490S188(StC5H11)114].

Author: Dieter Fenske, Universität Karlsruhe (Germany), http://www.aoc.uni-karlsruhe.de/english/380.php

Title: Synthesis and Crystal Structures of the Ligand-Stabilized Silver Chalcogenide Clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96] and [Ag490S188(StC5H11)114]

Angewandte Chemie International Edition, doi: 10.1002/anie.200704249

Dieter Fenske | Angewandte Chemie
Further information:
http://www.aoc.uni-karlsruhe.de/english/380.php

Further reports about: Atoms structure

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>