Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybridization partially restores vision in cavefish

08.01.2008
Hybridizing blind cave fish from different cave populations can partially restore the vision of their offspring, biologists at New York University have found. The study suggests that genetic engineering can override, at least in part, half a million years of evolutionary change in one generation.

“Evolution has many ways to accomplish the same end result, which in the case of cave fish is blindness,” said NYU Biology Professor Richard Borowsky, the study’s lead author. “For this reason, the genes that are mutated in one population that lead to blindness are different in other, independently evolved populations. Thus, when you cross them, the genetic deficiencies in one lineage are compensated for by strengths in the other, and vice-versa.”

The research, supported by grants from the National Science Foundation and the National Institutes of Health, appears in the most recent issue of the journal Current Biology.

The study examined four populations of blind cave fish, Astyanax mexicanus, which inhabit different caves in northeast Mexico. Blind for millennia, these fish evolved from eyed, surface fish. The researchers’ genetic analysis showed that the evolutionary impairment of eye development, as well as the loss of pigmentation and other cave-related changes, resulted from mutations at multiple gene sites.

... more about:
»Genetic »HYBRID »Restore »partially

In order to gauge how genetic make-up could bring about the restoration of vision, the researchers created hybrids of the different cave fish populations. Among these various hybrids, they found that nearly 40 percent in some hybrid crosses could see.

“These fish are descended from ancestors that have been isolated in the dark for nearly one million years and most likely haven’t had the capacity for vision for at least half that time,” said Borowsky. “But by recombining the right genes through hybridization, you can partially restore vision. Not only are the structures of the eye restored to the point where they regain function, but all the connections to the brain for proper processing of information not used for that enormous length of time are restored.”

Borowsky added that the findings could pave the way for greater understanding of human eyes.

“These genes that have had their function altered by mutation are the same genes that normally play important roles in the development and maintenance of the eye in humans as well as in fishes,” he explained. “The cave fish system gives us an experimental model for learning about human eye development and diseases.”

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Genetic HYBRID Restore partially

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>