Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Uncover Key Trigger for Potent Cancer-Fighting Marine Product

Discovery could lead to new versions of drug being tested as a cancer treatment in humans

Scripps Institution of Oceanography/UC San Diego

An unexpected discovery in marine biomedical laboratories at Scripps Institution of Oceanography at UC San Diego has led to new, key information about the fundamental biological processes inside a marine organism that creates a natural product currently being tested to treat cancer in humans. The finding could lead to new applications of the natural product in treating human diseases.

A research team led by Bradley Moore, a professor with UCSD's Scripps Oceanography Center for Marine Biotechnology and Biomedicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, and postdoctoral researcher Alessandra Eustáquio, along with their colleagues at The Salk Institute for Biological Studies, discovered an enzyme called SalL inside Salinispora tropica, a promising marine bacterium identified in 1991 by Scripps researchers.

... more about:
»Marine »Scripps »chlorine »natural

As they describe in the most recent issue of Nature Chemical Biology, the researchers also identified a novel process-a "pathway"-for the way the marine bacterium incorporates a chlorine atom, the key ingredient for triggering its potent cancer-fighting natural product. Previously known methods for activating chlorine were processed through oxygen-based approaches. The new method, on the other hand, employs a substitution strategy that uses non-oxidized chlorine as it is found in nature, as with common table salt.

"This was a totally unexpected pathway," said Moore. "There are well over 2,000 chlorinated natural products and this is the first example in which chlorine is assimilated by this kind of pathway," said Moore.

The Salinispora derivative "salinosporamide A" is currently in phase I human clinical trials for the treatment of multiple myeloma and other cancers. A team led by Moore and Scripps' Daniel Udwary solved the genome of S. tropica in June, an achievement that helped pave the way for the new discoveries.

Moore believes the discoveries provide a new "road map" for furthering S. tropica's potential for drug development. Knowing the pathway of how the natural product is made biologically may give biotechnology and pharmaceutical scientists the ability to manipulate key molecules to engineer new versions of Salinispora-derived drugs. Genetic engineering may allow the development of second-generation compounds that can't be found in nature.

"It's possible that drug companies could manufacture this type of drug in greater quantities now that we know how nature makes it," said Moore.

At this point it is unclear how pervasively SalL and its unique biological activation pathway exist in the ocean environment. Chlorine is a major component of seawater, and, according to Moore, a fundamental component of Salinispora's disease-inhibiting abilities. Salinosporamide A, for example, is 500 times more potent than its chlorine-free analog salinosporamide B.

"The chlorine atom in salinosporamide A is key to the drug's irreversible binding to its biological target and one of the reasons the drug is so effective against cancer," said Moore.

According to Eustáquio, finding the enzyme and its new pathway also carries implications for understanding evolutionary developments, including clues for how and why related enzymes are activated in different ways.

Also joining Moore and Eustáquio in the research were coauthors Florence Pojer and Joseph Noel (of the Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies), who developed high-resolution X-ray structures and other aspects of the research.

The work was supported by the National Oceanic and Atmospheric Administration, the National Institutes of Health and the National Science Foundation.

Mario Aguilera | EurekAlert!
Further information:

Further reports about: Marine Scripps chlorine natural

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>