Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A “fingerprint” for fruit juices

08.01.2008
Adulterations or other possible food frauds are a financial problem that affects many foodstuffs. This is why achieving the authentification of food products is of great importance. In the case of fruit juices the most common type of adulteration is mixing the original juice with juices from other, cheaper fruits (mainly grapefruit, grape or pear); in other words falsifying the juice.

Amongst the chemical methods of authentification, there are two different strategies. On the one hand, the employment of markers – chemical compounds that are ideally specific for or exclusive to each fruit and that can be rapidly, safely and cheaply measured and analysed.

This would be ideal. On many occasions, however, it is not possible to find markers that fulfil these requirements and, so, another approach to authentification methods is to measure and analyse a greater number of chemical compounds that make up the characteristic profile of each fruit or fruit juice. The complexity of this requires the employment of chemical analysis techniques and highly sophisticated statistical tools.

Polyphenolic compounds

... more about:
»detecting »fraud »polyphenols »profile »various

In order to confirm the authenticity of the fruit juices, researchers at the Department of Analytical Chemistry of the University of the Basque Country (EHU-UPV) are trying to identify their fingerprints, as it were, using a family of chemical compounds naturally present in all fruit and known as polyphenols. There are thousands of polyphenols amongst the various species in the vegetable kingdom, with differences both in the number of particular polyphenols present in each vegetable species as well as in the quantities found. Thus, different fruits have specific polyphenolic differences.

In order to analyse polyphenols present in each for each fruit, researchers at the EHU-UPV used a high-performance liquid chromatography technique (HPLC), through which they culled information about what particular polyphenols are present in each fruit and in what quantity. This enables the study of the differences in the polyphenols between one fruit and another.

In any case, to be more certain of these polyphenols profiles, the confirmation is needed of the identity of each one of the polyphenols appearing in these profiles. To this end, a mass spectroscopy (MS) analytical technique was employed.

Orange, mandarin, lemon ...

A total of 16 fruits (Orange, mandarin, lemon, grapefruit, etc.), grown in Spain, were studied. In each case a study of the various varieties of each fruit was undertaken – up to 77 varieties, in order to know the common points of all fruits, and their differences.

Beatriz Abad has found, amongst other things in her PhD, a quite exclusive marker for lemon and three for grapefruit. She has also shown that using several markers instead of one increases the probability in detecting the food fraud. Moreover, she observed key differences in various “prints” and, using certain statistical tools, showed that such differences provide a quite reliable degree of accuracy in the detection of some mixtures of juices. For example, detecting the presence of grapefruit in orange juice is very sure and relatively easy; detecting the presence of lemon juice in orange juice is also quite accurate; but detecting the presence of mandarin oranges in orange juice is much more difficult and not very reliable, given that the mandarin and the orange are very similar in their “prints”.

To date they have defined the polyphenolic profiles or polyphenolic “fingerprints” of the various juices from genuine fruit. The next step is currently being carried out by researchers at the EHU-UPV – applying these “prints to existing commercial juices on the market in order to detect possible adulterations or frauds.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1569&hizk=I

Further reports about: detecting fraud polyphenols profile various

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>