Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover molecular basis of monarch butterfly migration

08.01.2008
Since its discovery, the annual migration of eastern North American monarch butterflies has captivated the human imagination and spirit. That millions of butterflies annually fly a few thousand miles to reach a cluster of pine groves in central Mexico comprising just 70 square miles is, for many, an awesome and mysterious occurrence.

However, over the past two decades, scientists have begun to unveil the journey for what it is: a spectacular result of biology, driven by an intricate molecular mechanism in a tiny cluster of cells in the butterfly brain.

University of Massachusetts Medical School Professor and Chair of Neurobiology Steven M. Reppert, MD, has been a pioneering force in the effort to demystify the migration of the monarch. His previous research has demonstrated that the butterflies use a time-compensated sun compass and daylight cues to help them navigate to the pine groves. His studies have shown that time compensation is provided by the butterfly’s circadian clock, which allows the monarch to continually correct its flight direction to maintain a fixed flight bearing even as the sun moves across the sky.

Now, in two papers that will be published this week in two journals of the open-access publisher Public Library of Science (PLoS), Dr. Reppert and colleagues describe in detail the monarch butterfly circadian clock for the first time, and identify and characterize an entirely new clock gene that provides insight into not only the biology of the butterfly and its migration, but also the evolution of circadian clocks in general.

... more about:
»CRY »CRY2 »EST »Genome »Migration »Molecular »Reppert »circadian »mammal

In “Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation,” published in PLoS Biology, Reppert and colleagues reveal that the circadian clock of the monarch uses a novel molecular mechanism, heretofore not found in any other insect or mammal.

By studying the clock in two other organisms—the fruit fly and the mouse—scientists thought that they had very good models for an understanding of the insect clock and the mammalian clock, respectively. Through these studies, scientists had described a clock mechanism that is essentially a loop where proteins are made and destroyed over a cycle that takes approximately 24 hours to complete. Further, investigators identified those factors that work together to drive this process.

Reppert and colleagues were particularly interested in one of these factors: CRY, a cryptochrome protein that was initially discovered in plants and was subsequently found in the fly and the mouse. In the fly, CRY functions as a blue light photoreceptor, allowing light access to clock-containing cells. This enables the resetting of the clock by the light-dark cycle. In the mouse, CRY does not function to absorb light; rather, it is one of the essential components that power the central clockwork enabling the feedback loop to continue. (In the mouse, light enters the clock through the animal’s eyes.)

Given the function of CRY in flies and the role of light in migration, scientists presumed that the monarch’s clock would resemble that of the fly. Reppert and his collaborators were stunned and elated to find that the clock of the butterfly was as spectacular as its migration. Genetic studies revealed that the monarch had not only the fly-like CRY, but also another cryptochrome that further tests identified as a new clock molecule in the butterfly. Surprisingly, this cryptochrome, dubbed CRY2, is more similar in structure to vertebrate CRY than to that of the fruit fly.

Notably, the scientists also found that the core components of the monarch clock resembled those of the mammalian clock. As in the mouse, CRY2 functions in the butterfly to maintain the feedback loop, while CRY1 still allows light to access the cells, as in the fly.

“This is a very interesting realignment of how one thinks about insect clock models. There was no reason to suspect that the butterfly clock would be different from that of Drosophila. That it is different has already told us something about how circadian clocks have evolved,” explained Reppert. “What we have in the butterfly is an astounding clock mechanism, one that is more similar to our own circadian clock and less similar to the clock of the fly! The presence and function of two distinct CRYs suggest that the monarch’s is an ancestral clock; a clock that, over the course of evolution, has changed differently in other insects and mammals.”

Reppert and colleagues not only discovered the function of CRY2 in the monarch clock, but they also found that CRY2 may function to mark a critical neural pathway from the circadian clock to the sun compass. This clock-to-compass pathway provides an essential link between the clock and the sun compass, as both are necessary for successful orientation and navigation. As Reppert explains, “CRY2 appears to have a dual function— as a core clock component and as an output molecule, linking the clock to the compass.”

Concurrent with their studies of the monarch clock and relevant to the identification of CRY2, Reppert and colleagues have been working to create a butterfly genomics resource.

In “Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus),” published in PLoS ONE, Reppert and his collaborators describe a brain expressed sequence tag (EST) resource, used to identify genes involved in migratory behaviors by comparing the gene expression in the brains of migrating butterflies to those of non-migrating butterflies. They have already identified ~10,000 ESTs that likely represent over 50 percent of the genes that make up the monarch genome. The ESTs, which represent expression units of genes in the butterfly brain, are currently being analyzed and catalogued and Reppert hopes that the genetic information will be of wide use to scientists around the world.

“This information, along with genetic markers identified in the study, will help us distinguish genetic differences between populations or even between butterflies that are migratory and not migratory” Reppert said, adding, “This information sets the stage for the cloning of the butterfly genome.”

In fact, Reppert and his fellow investigators recently initiated a collaborative agreement with SymBio Corporation (www.sym-bio.com) of Menlo Park, CA to sequence the entire butterfly genome. According to Robert A. Feldman, President and CEO of SymBio, “We are very excited about the prospect of sequencing the monarch genome. The information gained will not only help elucidate the molecular basis of butterfly migration, but will also add substantial knowledge to comparative genomic studies.” SymBio specializes in sequencing the genomes of a wide range of organisms, from bacteria to mammals.

Ultimately, the Reppert laboratory will continue to work to understand how the monarch clock “talks” to the sun compass, with a focus on CRY2. The goal of the researchers’ studies is to understand the molecular mechanism and anatomical mechanisms for clock-compass interactions that enable migrants to maintain a set flight bearing as the sun moves across the sky during the day.

Dr. Reppert also states, “The monarch provides a fascinating animal model for the study of neurobiology. By understanding more about the way the circadian clock and the sun compass interact to allow the monarch to fulfill its biological destiny, we will gain valuable insights into how the brain functions to incorporate information about time and space, which has relevance far beyond the butterfly.”

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060004
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060002

Further reports about: CRY CRY2 EST Genome Migration Molecular Reppert circadian mammal

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>