Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene dose affects tumor growth

07.01.2008
Researchers at Johns Hopkins and Ohio State University have found that the number of copies of a particular gene can affect the severity of colon cancer in a mouse model. Publishing in the Jan. 3 issue of Nature, the research team describes how trisomy 21, or Down syndrome in humans, can repress tumor growth.

“We took a new approach to a 50-year-old debate about whether people with Down syndrome develop cancer less often than other people,” says Roger H. Reeves, Ph.D., professor of physiology in the McKusick-Nathans Institute of Genetic Medicine at Hopkins. “Studying the genetic differences associated with Down syndrome has revealed a new way of thinking about repressing cancer growth in everyone.”

The research team started with a mouse model that carries, rather than a whole extra copy of chromosome 21 as is seen in trisomy 21, or Down syndrome, a partial copy containing 108 genes. They then mated those trisomic mice to mice that carry a mutation that causes intestinal tumors, similar to those seen in colon cancer in humans. The trisomic, colon cancer mice had 44 percent fewer intestinal tumors compared to the colon cancer mice without the extra 108 genes.

The team then used another mouse model of Down syndrome, one that carries extra copies of only 33 of the genes on chromosome 21, and repeated their genetic crosses. Mice with three copies of the 33 genes developed half the number of tumors as mice with the standard two copies. Mice carrying a deletion that left them with only one copy of these 33 genes developed twice the number of tumors as usual.

... more about:
»Ets2 »ExtrA »Syndrome »trisomic

“Not only does having an extra copy of one or more of these genes repress tumor formation, it turns out that missing a copy enhances tumor growth-this was really surprising,” says Reeves.

Taking a closer look at the 33 genes to identify a likely culprit for the dose-specific relationship with tumor growth, the researchers focused on one gene, Ets2, which previously has been implicated as a cause of cancer. However, some research suggested that Ets2 activity might be involved in pathways that cause cells to die.

They then repeated their genetic crosses, this time with mice that had three, two or one copy of the Ets2 gene only. Once again, mice that were trisomic for 33 genes (including Ets2) had fewer tumors, but mice that were trisomic for 32 of these genes but had the normal two copies of Ets2 had a tumor number similar to control (non-trisomic) mice. Mice with just one copy of Ets2 developed more tumors.

“These results support studies concluding that people with Down syndrome get fewer cancers of many types. While we’ve only shown this effect with Ets2 and a particular type of colon tumor in mice, we think that the human Ets2 gene might contribute to resistance toward other types of cancer, based on what happens in Down syndrome,” says Reeves.

“Our findings are significant because they broaden the definition of an ‘oncogene’ or ‘tumor suppressor gene’ to include the effect of gene dosage,” says Michael Ostrowski, an Ohio State cancer researcher and Ets2 expert who developed the mouse models used in this study. “They also suggest that finding ways to increase the expression of genes such as Ets2 might lead to a new strategy for treating or controlling cancer,” he says.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Ets2 ExtrA Syndrome trisomic

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>