Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animated Movie of Ice

07.01.2008
Melting ice crystals in a computer animation

An animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse: Swedish researchers from the University of Uppsala have used a computer to simulate ice melting after it is heated with a short light pulse.

As they report in the journal Angewandte Chemie, the absorbed energy first causes the OH bonds to oscillate. After a few picoseconds (10-12 s) the energy is converted into rotational and translational energy, which causes the crystal to melt, though crystalline domains remain visible for quite a while.

The common form of ice crystals is known as hexagonal ice. In this form the oxygen atoms of the water molecules are arranged in a tetrahedral lattice. Each water molecule is bound to four neighboring molecules by means of bridging hydrogen bonds, leading to an average of two bridges per molecule. In water, there are, on average, only 1.75 bridging hydrogen bonds per molecule.

... more about:
»Melting »PuLSE »crystalline »picosecond

What happens in the process of melting? Carl Caleman and David van der Spoel have now successfully used a computer to simulate “snapshots” of melting ice crystals. These molecular dynamics simulations are ideal for gaining a better understanding of processes like melting or freezing because they make it possible to simultaneously describe both the structure and the dynamics of a system with atomic resolution and with a time resolution in the femtosecond (10-15 s) range.

The simulation demonstrated that the energy of the laser pulse initially causes the OH bonds in the water molecules to vibrate. Immediately after the pulse, the vibrational energy reaches a maximum. After about a picosecond, most of the vibrational energy has been transformed into rotational energy. The molecules begin to spin out of their positions within the crystal, breaking the bridging hydrogen bonds. After about 3 to 6 picoseconds, the rotations diminish in favor of translational motion.

The molecules are now able to move freely and the crystal structure collapses. This process starts out locally, at individual locations within the crystal. Once the symmetry of the structure is broken, the likelihood of melting processes occurring in the area immediately surrounding the crystal defect rises significantly. The melting process thus spreads out from this point little by little. At other locations the ice can maintain its crystalline structure a little longer.

A movie is available online at http://xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Author: David van der Spoel, Uppsala University (Sweden), mailto:spoel@xray.bmc.uu.se

Title: Picosecond Melting of Ice by an Infrared Laser Pulse: A Simulation Study

Angewandte Chemie International Edition, doi: 10.1002/anie.200703987

David van der Spoel | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Further reports about: Melting PuLSE crystalline picosecond

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>