Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animated Movie of Ice

07.01.2008
Melting ice crystals in a computer animation

An animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse: Swedish researchers from the University of Uppsala have used a computer to simulate ice melting after it is heated with a short light pulse.

As they report in the journal Angewandte Chemie, the absorbed energy first causes the OH bonds to oscillate. After a few picoseconds (10-12 s) the energy is converted into rotational and translational energy, which causes the crystal to melt, though crystalline domains remain visible for quite a while.

The common form of ice crystals is known as hexagonal ice. In this form the oxygen atoms of the water molecules are arranged in a tetrahedral lattice. Each water molecule is bound to four neighboring molecules by means of bridging hydrogen bonds, leading to an average of two bridges per molecule. In water, there are, on average, only 1.75 bridging hydrogen bonds per molecule.

... more about:
»Melting »PuLSE »crystalline »picosecond

What happens in the process of melting? Carl Caleman and David van der Spoel have now successfully used a computer to simulate “snapshots” of melting ice crystals. These molecular dynamics simulations are ideal for gaining a better understanding of processes like melting or freezing because they make it possible to simultaneously describe both the structure and the dynamics of a system with atomic resolution and with a time resolution in the femtosecond (10-15 s) range.

The simulation demonstrated that the energy of the laser pulse initially causes the OH bonds in the water molecules to vibrate. Immediately after the pulse, the vibrational energy reaches a maximum. After about a picosecond, most of the vibrational energy has been transformed into rotational energy. The molecules begin to spin out of their positions within the crystal, breaking the bridging hydrogen bonds. After about 3 to 6 picoseconds, the rotations diminish in favor of translational motion.

The molecules are now able to move freely and the crystal structure collapses. This process starts out locally, at individual locations within the crystal. Once the symmetry of the structure is broken, the likelihood of melting processes occurring in the area immediately surrounding the crystal defect rises significantly. The melting process thus spreads out from this point little by little. At other locations the ice can maintain its crystalline structure a little longer.

A movie is available online at http://xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Author: David van der Spoel, Uppsala University (Sweden), mailto:spoel@xray.bmc.uu.se

Title: Picosecond Melting of Ice by an Infrared Laser Pulse: A Simulation Study

Angewandte Chemie International Edition, doi: 10.1002/anie.200703987

David van der Spoel | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Further reports about: Melting PuLSE crystalline picosecond

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>