Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important medical breakthrough for organ transplants and cardiovascular diseases: Flemish researchers overcome oxygen deficiency

07.01.2008
No life without oxygen - but oxygen can also be harmful

Oxygen is necessary to life. Humans and animals use oxygen to convert fats and sugars into the energy that keeps all life processes running and maintains the body’s temperature. At the same time, oxygen can also be harmful when it is converted into toxic oxygen particles that cause serious damage to tissues and organs.

What about a little less?
Some animals can survive in places with little oxygen. Birds at high altitudes, for example, or animals that live underground or that can dive under water for a long time. Hibernating animals turn their bodily processes down low and live with a reduced amount of oxygen.

We can detect changes in the amount of oxygen with certain sensors. These oxygen meters are essential in adapting the body’s metabolism during the changeover from an oxygen-rich to an oxygen-deficient environment.

... more about:
»Organ »Oxygen »PhD1 »deficiency
Oxygen meter PHD1 plays crucial role
Julián Aragonés, Martin Schneider, Katie Van Geyte and Peter Fraisl - under the direction of Peter Carmeliet - have studied the role of the PHD1 oxygen meter. To do this, they used ‘knock-out’ mice that were unable to produce PHD1. They found that blocking an artery in these mice - thus obstructing the oxygen supply to the muscle - did not lead to the death of the surrounding muscular tissue. This was a very surprising result, since the muscle received too little oxygen to survive under normal circumstances. In the mice lacking the PHD1 oxygen meter, the tissue apparently ‘reprogrammed’ itself by means of a metabolic shift, so that the muscle needed less oxygen in order to continue to function. Furthermore, less oxygen in the muscle meant fewer toxic oxygen particles and thus less damage. So, the muscle could use the little oxygen that was available in a better and safer manner. These alterations enabled the muscle to stay perfectly healthy in these normally life-threatening conditions. In addition, the researchers also demonstrated that treating healthy mice even briefly with a PHD1-blocker could protect the muscles against oxygen deficiency - which opens a path to new therapies.
New therapeutic possibilities?
These findings have significant implications for several medical applications. Scientists can now begin to investigate whether PHD1-blockers can prevent the damage caused by blockage of a blood vessel through thrombosis or after a heart attack (in which the cardiac muscle experiences a shortage of oxygen). New treatment alternatives may also be possible for strokes, and surgeons may also be able to reduce the oxygen supply to organs for a longer period of time during many types of operations.

The absence of PHD1 might also explain the mysterious adaptations of hibernating animals, with important implications for the preservation of organs for transplant. Such tissues often have to contend with prolonged oxygen deficiency, which destroys their viability for transplantation. If these organs could be kept in a ‘hibernation’ condition, perhaps more lives could be saved...

Funding
This research has been funded by: CNIC, Deutsche Forschungsgemeinschaft, Lymphatic Research Foundation, Fond Québécois de la nature et des technologies, Federal Government Belgium, FWO, NIH, FRFC, K.U.Leuven, and VIB.
Mention both VIB and the university
When reporting this research, please always mention VIB as well as the university concerned.

This research was conducted by Julian Aragonés and colleagues in the ‘Functional genomics of cardiovascular and neurovascular biology and disease’ research group, led by Peter Carmeliet, within VIB’s Department of Transgene Technology and Gene Therapy, Katholieke Universiteit Leuven, under the direction of Désiré Collen.

Joke Comijn | alfa
Further information:
http://www.vib.be

Further reports about: Organ Oxygen PhD1 deficiency

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>