Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer cells' survival gene seen as drug target

03.01.2008
One of the deadliest forms of cancer appears to carry a specific weakness.

When a key gene called 14-3-3zeta is silenced, lung cancer cells can't survive on their own, researchers have found.

The gene is a potential target for selective anti-cancer drugs, says Haian Fu, PhD, professor of pharmacology, hematology & oncology at Emory University School of Medicine and Emory Winship Cancer Institute.

The research results will be published the week of Dec. 24 in the Proceedings of the National Academy of Sciences (PNAS). The paper's first author is Zenggang Li, PhD, a postdoctoral fellow in Dr. Fu's laboratory.

Lung cancer kills more Americans annually than any other type of malignancy, according to the National Cancer Institute. Yet treatment options are very limited, Dr. Fu says.

"The recent trend towards targeted therapies requires us to understand the altered signaling pathways in the cell that allow cancer to develop," he says. "If you think about genes that are dysregulated in cancer as drivers or passengers, we want to find the drivers and then, aim for these drivers during drug discovery."

Dr. Fu and his collaborator, Fadlo Khuri, MD, deputy director of clinical and translational research at Emory Winship Cancer Institute, chose to focus on the gene 14-3-3zeta because it is activated in many lung tumors. In addition, recent research elsewhere shows that survival of lung cancer patients is worse if the gene is on overdrive in their tumors, Dr. Fu says.

14-3-3 genes are found in mammals, plants and fungi. In the human body, they come in seven flavors, each given a Greek letter. Scientists describe the proteins they encode as adaptors that clamp onto other proteins. The clamping function depends on whether the target protein is phosphorylated, a chemical switch that regulates processes such as cell division, growth, or death.

"We knew that 14-3-3 is important in controlling EGFR (epidermal growth factor receptor) signaling, which is a main pathway driving lung cancer," Dr. Fu says. A couple of recently introduced drugs that were shown to be effective against lung cancer target EGFR, he adds.

In the PNAS study, the authors used a technique called RNA interference to selectively silence the 14-3-3zeta gene. They found that when 14-3-3zeta is turned off, lung cancer cells become less able to form new tumor colonies in a laboratory test.

One of the most important properties of cancer cells is their ability to grow and survive without touching other cells or the polymers that connect them. While the authors found that the cells with 14-3-3zeta turned off do not grow more slowly, the cells are vulnerable to anoikis (Greek for homelessness), a form of cell death that happens when non-cancerous cells that are accustomed to growing in layers find themselves alone.

Further experiments showed that 14-3-3zeta regulates a set of proteins called the Bcl2 family that control programmed cell death, and its absence upsets the balance within the family.

"You can see how control of anoikis means 14-3-3zeta could play a critical role in cancer invasion and metastasis," Dr. Fu says. "The mechanistic question we still haven't answered is: what makes zeta unique so that it can't be replaced by the others."

The finding has implications beyond lung cancer, in that 14-3-3zeta is also activated in other forms of cancer such as breast and oral, he notes.

"Dr. Fu and his team's findings unmask the role of 14-3-3 zeta in the survival advantage of lung cancer cells and their dependence on it," Dr. Khuri says. "Targeting this critical molecule could lead to meaningful therapeutic progress."

Since 14-3-3zeta was identified as a promising target for drugs, Dr. Fu and his co-workers are making use of a robot-driven screening program at the Emory Chemical Biology Discovery Center to sort through thousands of chemicals that may disrupt its interactions specifically.

They hope to identify these compounds rapidly and move them from bench into clinic testing to benefit patients.

Vince Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org

Further reports about: 14-3-3zeta Target cancer cells lung cancer survival

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>