Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer cells' survival gene seen as drug target

03.01.2008
One of the deadliest forms of cancer appears to carry a specific weakness.

When a key gene called 14-3-3zeta is silenced, lung cancer cells can't survive on their own, researchers have found.

The gene is a potential target for selective anti-cancer drugs, says Haian Fu, PhD, professor of pharmacology, hematology & oncology at Emory University School of Medicine and Emory Winship Cancer Institute.

The research results will be published the week of Dec. 24 in the Proceedings of the National Academy of Sciences (PNAS). The paper's first author is Zenggang Li, PhD, a postdoctoral fellow in Dr. Fu's laboratory.

Lung cancer kills more Americans annually than any other type of malignancy, according to the National Cancer Institute. Yet treatment options are very limited, Dr. Fu says.

"The recent trend towards targeted therapies requires us to understand the altered signaling pathways in the cell that allow cancer to develop," he says. "If you think about genes that are dysregulated in cancer as drivers or passengers, we want to find the drivers and then, aim for these drivers during drug discovery."

Dr. Fu and his collaborator, Fadlo Khuri, MD, deputy director of clinical and translational research at Emory Winship Cancer Institute, chose to focus on the gene 14-3-3zeta because it is activated in many lung tumors. In addition, recent research elsewhere shows that survival of lung cancer patients is worse if the gene is on overdrive in their tumors, Dr. Fu says.

14-3-3 genes are found in mammals, plants and fungi. In the human body, they come in seven flavors, each given a Greek letter. Scientists describe the proteins they encode as adaptors that clamp onto other proteins. The clamping function depends on whether the target protein is phosphorylated, a chemical switch that regulates processes such as cell division, growth, or death.

"We knew that 14-3-3 is important in controlling EGFR (epidermal growth factor receptor) signaling, which is a main pathway driving lung cancer," Dr. Fu says. A couple of recently introduced drugs that were shown to be effective against lung cancer target EGFR, he adds.

In the PNAS study, the authors used a technique called RNA interference to selectively silence the 14-3-3zeta gene. They found that when 14-3-3zeta is turned off, lung cancer cells become less able to form new tumor colonies in a laboratory test.

One of the most important properties of cancer cells is their ability to grow and survive without touching other cells or the polymers that connect them. While the authors found that the cells with 14-3-3zeta turned off do not grow more slowly, the cells are vulnerable to anoikis (Greek for homelessness), a form of cell death that happens when non-cancerous cells that are accustomed to growing in layers find themselves alone.

Further experiments showed that 14-3-3zeta regulates a set of proteins called the Bcl2 family that control programmed cell death, and its absence upsets the balance within the family.

"You can see how control of anoikis means 14-3-3zeta could play a critical role in cancer invasion and metastasis," Dr. Fu says. "The mechanistic question we still haven't answered is: what makes zeta unique so that it can't be replaced by the others."

The finding has implications beyond lung cancer, in that 14-3-3zeta is also activated in other forms of cancer such as breast and oral, he notes.

"Dr. Fu and his team's findings unmask the role of 14-3-3 zeta in the survival advantage of lung cancer cells and their dependence on it," Dr. Khuri says. "Targeting this critical molecule could lead to meaningful therapeutic progress."

Since 14-3-3zeta was identified as a promising target for drugs, Dr. Fu and his co-workers are making use of a robot-driven screening program at the Emory Chemical Biology Discovery Center to sort through thousands of chemicals that may disrupt its interactions specifically.

They hope to identify these compounds rapidly and move them from bench into clinic testing to benefit patients.

Vince Dollard | EurekAlert!
Further information:
http://www.emoryhealthcare.org

Further reports about: 14-3-3zeta Target cancer cells lung cancer survival

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>