Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Drug Targets May Fight Tuberculosis and Other Bacterial Infections in Novel Way

03.01.2008
Research Into "Virulence Factors" Expands War Against Infectious Disease Beyond Antibiotics, Weill Cornell Researchers Say

Over the course of the 20th Century, doctors waged war against infectious bacterial illness with the best new weapon they had: antibiotics.

But the emergence of dangerous, multi-drug resistant strains of tuberculosis and other killer infections means that in the 21st century antibiotics are losing ground against bacterial disease.

Now, researchers from Weill Cornell Medical College in New York City say exciting new molecular targets—so-called "virulence factors" that bacteria use to thrive once they are in the host—present an alternative, potent means of stopping TB, leprosy and other bacterial illness.

"We have developed the first inhibitor of a key small molecule from Mycobacterium tuberculosis and Mycobacterium leprae (which causes leprosy) utilized to subvert human host's defenses and damage and invade human host's cells during infection," explains study senior author Dr. Luis Quadri, Associate Professor of Microbiology and Immunology at Weill Cornell.

"With this work, we now have proof of principle for the inhibition of this virulence factor in bacteria cultured in the lab. Our next step is to explore whether this inhibitor can stop these pathogens from multiplying in a mouse host, curtailing infection," Dr. Quadri says.

The findings—published online today in Chemistry and Biology and appearing in the journal's Jan. 26 print edition—highlight what Dr. Quadri has called a "paradigm shift" in infectious disease research.

"We are moving beyond antimicrobials such as antibiotics, which kill the bacterium directly, to anti-infectives, that may have no effect against the pathogen in the test tube but which do compromise its ability to infect and spread in the host," he explains. "We believe that the expansion of the drug armamentarium to include such anti-infective drugs could help the fight against multi-drug resistant infection that has become such a challenge today."

According to World Health Organization data, TB remains one of the world's top-ten leading causes of death, killing nearly two million people each year. Multi-drug resistant strains of M. tuberculosis—as well as even more dangerous, extensive-drug-resistant (XDR) strains of the bug—are emerging each year.

"Obviously, we are going to require more than the traditional antimicrobial approach to turn this situation around," Dr. Quadri says.

In this study, Dr. Quadri, along with co-lead researchers Drs. Julian Ferraras and Karen Stirrett, focused on particular small-molecule virulence factors called phenolic glycolipids (PGLs).

Various strains of M. tuberculosis use PGLs to weaken our body defenses whereas M. leprae uses PGLs to damage and invade our nerve cells during infection.

"Therefore, we hypothesize that drugs blocking PGL synthesis would reduce the adaptive fitness of PGL-producing M. tuberculosis strains in the human host by eliminating PGL-dependent immunomodulatory effects. These drugs may also diminish the ability of M. leprae to invade nerve cells and produce nerve function impairment," Dr. Quadri explains.

In complex work in the laboratory, the researchers investigated and then elucidated a crucial, early step in PGL biosynthesis. They also pinpointed a key enzyme, called FadD22, that is essential to that stage of the process.

"Based on that, we collaborated with Dr. Derek Tan's lab at Memorial Sloan-Kettering Cancer Center to synthesize a molecule that targets FadD22 and successfully inhibits that early step in PGL production," Dr. Quadri said.

Follow-up work using both enzyme assays and M. tuberculosis assays confirmed that the new inhibitor does block the production of PGLs. Although it was technically not possible to test the inhibitor in M. leprae, that pathogen is very closely related to M. tuberculosis, so the researchers believe their agent would inhibit production of PGLs there, as well.

Work is already underway to come up with other, even more potent PGL biosynthesis inhibitors, Dr. Quadri says, with an eye to testing the best candidates in an animal model.

"We are not saying that anti-infectives will ever replace antibiotics, but with pathogens as deadly as M. tuberculosis or as debilitating as M. leprae, you'd ideally like to have as many pharmaceutical weapons in your armamentarium as you can, to use either alone or in combination," Dr. Quadri says.

The new discoveries are highly encouraging, he adds.

"I believe that drugs targeting virulence factors are just one component of the paradigm shift in the antimicrobial drug discovery for the 21st century—one that will offer patients more options in the fight against truly global killers," he says.

This research was funded by the U.S. National Institutes of Health, the Stavros S. Niarchos Foundation, NYSTAR Watson Investigator Program, William H. Goodwin and Alice Goodwin, the Commonwealth Foundation for Cancer Research and MSKCC Experimental Therapeutics Center.

Co-researchers include Xuequan Lu of Memorial Sloan-Kettering Cancer Center, New York City; Jae-Sang Ryu, now at Ewha Woman's University, Seoul, S. Korea; and Clifford E. Soll, Hunter College, New York City.

Weill Cornell Medical College
Weill Cornell Medical College—Cornell University's Medical School located in New York City—is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Weill Cornell, which is a principal academic affiliate of NewYork-Presbyterian Hospital, offers an innovative curriculum that integrates the teaching of basic and clinical sciences, problem-based learning, office-based preceptorships, and primary care and doctoring courses. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research in such areas as stem cells, genetics and gene therapy, geriatrics, neuroscience, structural biology, cardiovascular medicine, infectious disease, obesity, cancer, psychiatry and public health—and continue to delve ever deeper into the molecular basis of disease in an effort to unlock the mysteries behind the human body and the malfunctions that result in serious medical disorders. The Medical College—in its commitment to global health and education—has a strong presence in such places as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. With the historic Weill Cornell Medical College in Qatar, the Medical School is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances—from the development of the Pap test for cervical cancer to the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial for gene therapy for Parkinson's disease, the first indication of bone marrow's critical role in tumor growth, and, most recently, the world's first successful use of deep brain stimulation to treat a minimally-conscious brain-injured patient. For more information, visit www.med.cornell.edu.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu

Further reports about: PGL Pathogen Quadri Tuberculosis Weill anti-infective leprae strains virulence

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>