Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Baumann lab identifies elusive telomere RNA subunit in single cell model

The Stowers Institute’s Baumann Lab has identified the long-sought telomerase RNA gene in a single-cell research model. Their findings have been posted to the Web site of the journal Nature Structural & Molecular Biology and will appear in a future print edition.

Chromosomes shorten with every cell division. In stem cells and in cancer cells, this shortening is compensated by telomerase, an enzyme that adds short repeat sequences to the ends of chromosomes to replenish lost DNA. As telomerase is required for the continued growth of most cancer cells, the enzyme is considered a promising target for new anti-cancer drugs. A correlation between telomere length and a variety of diseases has further intensified interest in understanding telomerase and its regulation.

The RNA subunit of telomerase is of particular interest as it represents one of the two core components of telomerase and provides the template for the short repeats that are added to the ends of chromosomes. The Baumann Lab is working to understand how telomerase is assembled, how it is recruited to chromosome ends, and how its activity is regulated. These efforts may shed light on the sometimes surprising correlations between telomere shortening and stress, smoking, obesity, and a variety of diseases including cancer and coronary heart disease.

Telomerase RNA has been studied in a variety of simple model organisms, but telomere maintenance turned out to be quite different in these species compared to human cells. Recently, the Baumann Lab used a biochemical approach to identify and clone the RNA subunit of telomerase in Schizosaccharomyces pombe, or fission yeast.

... more about:
»Chromosome »Component »RNA »Telomerase »Telomere »subunit

“The identification of the fission yeast equivalent of the telomerase RNA gene provides us with a critical tool to study telomerase in a genetically tractable, single-cell organism with a telomere maintenance machinery that shares many features with human cells,” explained Peter Baumann, Ph.D., Assistant Investigator and senior author on the paper. “We and others had been studying telomerase activity, recruitment, and regulation for several years but the fact that the RNA subunit was unknown in our fission yeast model system severely limited our ability to make progress.”

Now that the missing component of the model system has been identified, the Baumann Lab’s structural and functional studies are expected to progress rapidly. The lab is now turning its attention to how and where telomerase is assembled from its components in the cell and what processing it must undergo to become active.

Marie Jennings | EurekAlert!
Further information:

Further reports about: Chromosome Component RNA Telomerase Telomere subunit

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>