Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baumann lab identifies elusive telomere RNA subunit in single cell model

03.01.2008
The Stowers Institute’s Baumann Lab has identified the long-sought telomerase RNA gene in a single-cell research model. Their findings have been posted to the Web site of the journal Nature Structural & Molecular Biology and will appear in a future print edition.

Chromosomes shorten with every cell division. In stem cells and in cancer cells, this shortening is compensated by telomerase, an enzyme that adds short repeat sequences to the ends of chromosomes to replenish lost DNA. As telomerase is required for the continued growth of most cancer cells, the enzyme is considered a promising target for new anti-cancer drugs. A correlation between telomere length and a variety of diseases has further intensified interest in understanding telomerase and its regulation.

The RNA subunit of telomerase is of particular interest as it represents one of the two core components of telomerase and provides the template for the short repeats that are added to the ends of chromosomes. The Baumann Lab is working to understand how telomerase is assembled, how it is recruited to chromosome ends, and how its activity is regulated. These efforts may shed light on the sometimes surprising correlations between telomere shortening and stress, smoking, obesity, and a variety of diseases including cancer and coronary heart disease.

Telomerase RNA has been studied in a variety of simple model organisms, but telomere maintenance turned out to be quite different in these species compared to human cells. Recently, the Baumann Lab used a biochemical approach to identify and clone the RNA subunit of telomerase in Schizosaccharomyces pombe, or fission yeast.

... more about:
»Chromosome »Component »RNA »Telomerase »Telomere »subunit

“The identification of the fission yeast equivalent of the telomerase RNA gene provides us with a critical tool to study telomerase in a genetically tractable, single-cell organism with a telomere maintenance machinery that shares many features with human cells,” explained Peter Baumann, Ph.D., Assistant Investigator and senior author on the paper. “We and others had been studying telomerase activity, recruitment, and regulation for several years but the fact that the RNA subunit was unknown in our fission yeast model system severely limited our ability to make progress.”

Now that the missing component of the model system has been identified, the Baumann Lab’s structural and functional studies are expected to progress rapidly. The lab is now turning its attention to how and where telomerase is assembled from its components in the cell and what processing it must undergo to become active.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: Chromosome Component RNA Telomerase Telomere subunit

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>