Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copy number variation may stem from replication misstep

03.01.2008
Genome rearrangements, resulting in variations in the numbers of copies of genes, occur when the cellular process that copies DNA during cell division stalls and then switches to a different genetic “template,” said researchers at Baylor College of Medicine in Houston in a report that appears today in the journal Cell.

The new mechanism is called replication “Fork Stalling and Template Switching,” said Dr. James R. Lupski, Cullen professor of molecular and human genetics and vice chair of the department at BCM. He is also professor of pediatrics. It not only represents a new way in which the genome generates DNA copy number variation, but it also demonstrates that copy number variation can occur at a different time point in the life of a cell. DNA replication takes place as the cell is dividing and becoming two.

Copy number variation involves structural changes in the human genome that result in the deletion or extra copies of genes (or parts of them). Often, this process is associated with disease, and also with evolution of the genome itself.

DNA (deoxyribonucleic acid) exists as two complementary strands that remain together because of the attraction between nucleotides. A or adenosine is always attracted to T (thymidine). C or cytosine is always attracted to G or guanine.

When a cell divides, it must reproduce its DNA so that each cell that results from the division has the same genetic code. That means it must replicate its DNA. During this process, an enzyme called a helicase separates the two strands, breaking the hydrogen bonds between the A – T and G – C base pairs holding the strands together. The two separating strands become the replication fork. On one strand, an enzyme called DNA polymerase reads the genetic material in the strand as a template and makes a strand (leading strand) of complementary DNA to pair to it. Again, the code is A to T and C to G. This process is continuous. On the other strand that comprises the fork, the complementary strand (lagging strand) is made in short, separated segments by a process that involves RNA and a series of enzymes.

Until the 1990s, researchers studying reasons for genetic mutations or changes looked at molecular “typos” in this process, tiny changes in the As, Ts, Cs or Gs called single nucleotide polymorphisms (SNPs). These SNPs changed the message of the gene. However, in the early 1990s, Lupski was one of the pioneers to elucidate a new mechanism in which the structure of the DNA itself was grossly duplicated or deleted, which changed numbers of copies of a gene that occurred in this genetic material. This “copy number variation” wrote a new chapter in the understanding of genetic variation.

Lupski and his former graduate student Dr. Jennifer Lee (now a postdoctoral fellow at BCM) found in their experiments that this process stalls when there is a problem with the DNA. In that case, the process switches to a different template, copying another similar but significantly different stretch of DNA, before it switches back to the appropriate area. Dr. Claudia M. B. Carvalho, also of BCM, took part in this research.

Previously, Lupski and colleagues had identified two different ways in which recombinations of genetic material resulted in copy number variation. However, when Lee was studying an inherited disease called Pelizaeus-Merzbacher disease, she found changes in the genome that the previous theories about DNA recombination did not explain.

Structural changes in the genome in people with the disease, a neurodevelopmental disorder, vary from person to person. In some places, genetic material that was duplicated was similar to that nearby but it was thrust into the middle of another duplication of material. The question was how they got there, Lee said.

The fork stalling, template switching mechanism explained the oddities, said Lupski.

“It stalls and rather than restart at the position where it is, it switches to a different template,” said Lupski. Usually this occurs in an area of the genome where there are many repeats of the nucleotides that form an unusual structure. This can actually aid in the template switching, he said.

“One could envision that it could happen anywhere in the genome and would be a way to make copy number changes in any gene you want,” he said. It might even play a role in evolution, allowing organisms to change. Some of the changes might make it easier for that organism to live in particular environment or survive in a stressed situation.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.cell.com
http://www.bcm.edu/genetics/faculty/index.html

Further reports about: DNA Genome Lupski Nucleotide Variation genetic material replication

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>