Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Metal Atoms

31.12.2007
New class of lithium-rich solids with unusually high lithium mobility

Mobile phones, notebook computers, iPods—the boom in portable computing and communications devices is dependent on rechargeable lithium-ion batteries to deliver power. These batteries offer the highest energy density, allow laptops to function for useful amounts of time, and do not display a memory effect when compared to other types of rechargeable batteries.

However, modern rechargeable batteries are still not truly satisfactory. Modern, efficient, rechargeable batteries and fuel cells require materials with an enhanced ability to conduct lithium ions. German researchers have now developed a new class of inorganic ionic conductor with a structure analogous to that of the mineral argyrodite.

A team led by Hans-Jörg Deiseroth in Siegen, Germany reports, in the journal Angewandte Chemie, the characterization of the most conductive representative of the man-made argyrodite minerals made of lithium, phosphorus, sulfur, and bromine atoms.

... more about:
»Atoms »Lithium »Mineral »argyrodite »ionic »ions »rechargeable

In ionic conductors, charge is not transported in the form of electrons as it is in metals; instead, the charge is transported in the form of charged particles—typically, lithium ions. This transport requires materials in which the lithium ions can move as freely as possible. The team from the University of Siegen, in cooperation with scientists at the University of Münster, started from a long-known mineral: argyrodite is a silver-, germanium-, and sulfur-containing mineral discovered near Freiberg, Germany in 1885 and the silver ions in this material are very mobile.

The individual components of argyrodite can be replaced by a number of other atoms without altering the typical structure of the mineral. The term argyrodite now refers to an entire class of compounds that have a specific arrangement of atoms and type of structure. The team led by Deiseroth produced a version of the mineral in which silver is replaced by lithium, germanium by phosphorus, and some of the sulfur atoms by halides (chloride, bromide, or iodide), resulting in argyrodite-like structures that have a composition of Li6PS5X (X: Cl-, Br-, or I-).

In the crystal lattice the phosphorus, sulfur, and halide atoms adopt a dense tetrahedral packing arrangment in which the gaps are filled somewhat regularly with lithium ions. The lithium ions can “jump” from gap to gap. The freely moving ions indicate that the solid has a high ionic conductivity and the reported bromine-containing structure has the highest ionic conductivity of lithium ions known for any argyrodite to date.

The scientists have thoroughly examined the lithium argyrodites by single-crystal X-ray crystallography and nuclear magnetic resonance spectroscopy. This analysis allowed precise characterization of the crystal structures of these compounds and provided fascinating insights into the dynamics of the mobile lithium ions.

Author: Hans-Jörg Deiseroth, Universität Siegen (Germany), http://www.uni-siegen.de/fb8/ac/hjd/index.html?lang=de

Title: Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility

Angewandte Chemie International Edition 2008, 47, No. 4, 755–758, doi: 10.1002/anie.200703900

Hans-Jörg Deiseroth | Angewandte Chemie
Further information:
http://www.uni-siegen.de/fb8/ac/hjd/index.html?lang=de

Further reports about: Atoms Lithium Mineral argyrodite ionic ions rechargeable

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>