Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Metal Atoms

31.12.2007
New class of lithium-rich solids with unusually high lithium mobility

Mobile phones, notebook computers, iPods—the boom in portable computing and communications devices is dependent on rechargeable lithium-ion batteries to deliver power. These batteries offer the highest energy density, allow laptops to function for useful amounts of time, and do not display a memory effect when compared to other types of rechargeable batteries.

However, modern rechargeable batteries are still not truly satisfactory. Modern, efficient, rechargeable batteries and fuel cells require materials with an enhanced ability to conduct lithium ions. German researchers have now developed a new class of inorganic ionic conductor with a structure analogous to that of the mineral argyrodite.

A team led by Hans-Jörg Deiseroth in Siegen, Germany reports, in the journal Angewandte Chemie, the characterization of the most conductive representative of the man-made argyrodite minerals made of lithium, phosphorus, sulfur, and bromine atoms.

... more about:
»Atoms »Lithium »Mineral »argyrodite »ionic »ions »rechargeable

In ionic conductors, charge is not transported in the form of electrons as it is in metals; instead, the charge is transported in the form of charged particles—typically, lithium ions. This transport requires materials in which the lithium ions can move as freely as possible. The team from the University of Siegen, in cooperation with scientists at the University of Münster, started from a long-known mineral: argyrodite is a silver-, germanium-, and sulfur-containing mineral discovered near Freiberg, Germany in 1885 and the silver ions in this material are very mobile.

The individual components of argyrodite can be replaced by a number of other atoms without altering the typical structure of the mineral. The term argyrodite now refers to an entire class of compounds that have a specific arrangement of atoms and type of structure. The team led by Deiseroth produced a version of the mineral in which silver is replaced by lithium, germanium by phosphorus, and some of the sulfur atoms by halides (chloride, bromide, or iodide), resulting in argyrodite-like structures that have a composition of Li6PS5X (X: Cl-, Br-, or I-).

In the crystal lattice the phosphorus, sulfur, and halide atoms adopt a dense tetrahedral packing arrangment in which the gaps are filled somewhat regularly with lithium ions. The lithium ions can “jump” from gap to gap. The freely moving ions indicate that the solid has a high ionic conductivity and the reported bromine-containing structure has the highest ionic conductivity of lithium ions known for any argyrodite to date.

The scientists have thoroughly examined the lithium argyrodites by single-crystal X-ray crystallography and nuclear magnetic resonance spectroscopy. This analysis allowed precise characterization of the crystal structures of these compounds and provided fascinating insights into the dynamics of the mobile lithium ions.

Author: Hans-Jörg Deiseroth, Universität Siegen (Germany), http://www.uni-siegen.de/fb8/ac/hjd/index.html?lang=de

Title: Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility

Angewandte Chemie International Edition 2008, 47, No. 4, 755–758, doi: 10.1002/anie.200703900

Hans-Jörg Deiseroth | Angewandte Chemie
Further information:
http://www.uni-siegen.de/fb8/ac/hjd/index.html?lang=de

Further reports about: Atoms Lithium Mineral argyrodite ionic ions rechargeable

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>