Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More evidence for new species hidden in plain sight

21.12.2007
Two articles published today in the online open access journals BMC Evolutionary Biology and BMC Biology provide further evidence that we have hugely underestimated the number of species with which we share our planet.

Today sophisticated genetic techniques mean that superficially identical animals previously classed as members of a single species, including the frogs and giraffes in these studies, could in fact come from several distinct ‘cryptic’ species.

In the Upper Amazon, Kathryn Elmer and Stephen Lougheed working at Queen’s University, Kingston, Canada teamed up with José Dávila from Instituto de Investigación en Recursos Cinegéticos, Cuidad Real, Spain to investigate the terrestrial leaflitter frog (Eleutherodactylus ockendeni) at 13 locations across Ecuador.

Looking at the frogs’ mitochondrial and nuclear DNA, the researchers found three distinct species, which look very much alike. These species have distinct geographic distributions, but these don't correspond to modern landscape barriers. Coupled with phylogenetic analyses, this suggests they diverged before the Ecuadorean Andes arose, in the Miocene period over 5.3 million years ago.

... more about:
»distinct »evidence

"Our research coupled with other studies suggests that species richness in the upper Amazon is drastically underestimated by current inventories based on morphospecies," say the authors.

And in Africa, an interdisciplinary team from the University of California, Los Angeles, Omaha’s Henry Doorly Zoo, and the Mpala Research Centre in Kenya has found that there may be more to the giraffe than meets the eye, too.

Their analysis of nuclear and mitochondrial DNA shows at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Further divisions within these groups mean that in total the researchers have spotted 11 genetically distinct populations.

“Such extreme genetic subdivision within a large vertebrate with high dispersal
capabilities is unprecedented and exceeds that of any other large African mammal,” says graduate student David Brown, first author of the study. The researchers estimate that the giraffe populations they surveyed have been genetically distinct for between 0.13 and 1.62 million years. The findings have serious implications for giraffe conservation because some among these subgroups have as few as 100 members, making them highly endangered – if not yet officially recognised – species.

Journal of Biology aims to address the issue of cryptic species in a forthcoming mini-review article also published this week. The review will look at current research agendas into biodiversity, incorporating research approaches from taxonomy, molecular population biology.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/

Further reports about: distinct evidence

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>