Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predator pressures maintain bees’ social life

21.12.2007
The complex organisation of some insect societies is thought to have developed to such a level that these animals can no longer survive on their own. Research published in the online open access journal BMC Evolutionary Biology suggests that rather than organisational, genetic, or biological complexity defining a ‘point of no return’ for social living, pressures of predation create advantages to not living alone.

The ancient systems of sociality in bees, wasps, termites, and ants seem to have become an obligatory way of life for these organisms as there are almost no examples of species reverting to solitary lifestyles. "This has prompted the notion of a 'point of no return' whereby evolutionary changes in behaviour, genetics, and shape in adaptation to a social lifestyle prohibit the insects from living without their society — a queen bee losing her workers would be like a human being losing a vital organ", explains Luke Chenoweth of Flinders University, Australia.

Most social insects have developed a system in which there is a division of labour between castes of related individuals. Reproductive queens rely on sterile workers, usually their daughters, to feed them and nurture their young, but in a few examples of social bees all females in a colony retain the ability to breed but some do not, a phenomenon known as totipotency. Chenoweth and colleagues investigated Halterapis nigrinervis, an African species thought to provide a rare example of a bee with totipotent social ancestors that has reverted to a solitary lifestyle. By investigating this species the researchers hoped to reveal the factors that allow or prevent reversion to a solitary lifestyle.

The researchers collected nests from various habitats. Surprisingly they found that over half contained multiple females and those containing multiple females were more likely to have bee larvae in them. “The results mean that H. nigrinervis is social and that there are consequently no known losses of sociality in this group of bees.” As these bees lack the social and behavioural complexity of honeybees and many other social insects, the fact that they do not seem to live solitarily in any circumstances suggests that ecological pressures rather than biological factors maintain sociality.

... more about:
»Social »maintain »pressures »sociality

The researchers hypothesise that sociality in H. nigrinervis is maintained by predation: multiple females not only offer greater protection to the brood in the nest but also should an adult fall foul of predators, nest-mates will raise their young. While many social insects might retain the potential to raise young alone, the benefits of protection against predation result in sociality being maintained.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcevolbiol/

Further reports about: Social maintain pressures sociality

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>