Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predator pressures maintain bees’ social life

21.12.2007
The complex organisation of some insect societies is thought to have developed to such a level that these animals can no longer survive on their own. Research published in the online open access journal BMC Evolutionary Biology suggests that rather than organisational, genetic, or biological complexity defining a ‘point of no return’ for social living, pressures of predation create advantages to not living alone.

The ancient systems of sociality in bees, wasps, termites, and ants seem to have become an obligatory way of life for these organisms as there are almost no examples of species reverting to solitary lifestyles. "This has prompted the notion of a 'point of no return' whereby evolutionary changes in behaviour, genetics, and shape in adaptation to a social lifestyle prohibit the insects from living without their society — a queen bee losing her workers would be like a human being losing a vital organ", explains Luke Chenoweth of Flinders University, Australia.

Most social insects have developed a system in which there is a division of labour between castes of related individuals. Reproductive queens rely on sterile workers, usually their daughters, to feed them and nurture their young, but in a few examples of social bees all females in a colony retain the ability to breed but some do not, a phenomenon known as totipotency. Chenoweth and colleagues investigated Halterapis nigrinervis, an African species thought to provide a rare example of a bee with totipotent social ancestors that has reverted to a solitary lifestyle. By investigating this species the researchers hoped to reveal the factors that allow or prevent reversion to a solitary lifestyle.

The researchers collected nests from various habitats. Surprisingly they found that over half contained multiple females and those containing multiple females were more likely to have bee larvae in them. “The results mean that H. nigrinervis is social and that there are consequently no known losses of sociality in this group of bees.” As these bees lack the social and behavioural complexity of honeybees and many other social insects, the fact that they do not seem to live solitarily in any circumstances suggests that ecological pressures rather than biological factors maintain sociality.

... more about:
»Social »maintain »pressures »sociality

The researchers hypothesise that sociality in H. nigrinervis is maintained by predation: multiple females not only offer greater protection to the brood in the nest but also should an adult fall foul of predators, nest-mates will raise their young. While many social insects might retain the potential to raise young alone, the benefits of protection against predation result in sociality being maintained.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcevolbiol/

Further reports about: Social maintain pressures sociality

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>