Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene prediction method capitalizes on multiple genomes

20.12.2007
Researchers at Stanford University report in the online open access journal, Genome Biology, a new approach to computationally predicting the locations and structures of protein-coding genes in a genome.

Gene finding remains an important problem in biology as scientists are still far from fully mapping the set of human genes. Furthermore, gene maps for other vertebrates, including important model organisms such as mouse, are much more incomplete than the human annotation. The new technique, known as CONTRAST (CONditionally TRAined Search for Transcripts), works by comparing a genome of interest to the genomes of several related species.

CONTRAST exploits the fact that the functional role protein-coding genes play a specific part within a cell and are therefore subjected to characteristic evolutionary pressures. For example, mutations that alter an important part of a protein's structure are likely to be deleterious and thus selected against. On the other hand, mutations that preserve a protein's amino acid sequence are normally well tolerated. Thus, protein-coding genes can be identified by searching a genome for regions that show evidence such patterns of selection. However, learning to recognize such patterns when more than two species are compared has proved difficult.

Previous systems for gene prediction were able to effectively make use of one additional 'informant' genome. For example, when searching for human genes, taking into account information from the mouse genome led to a substantial increase in accuracy. But, no system was able to leverage additional informant genomes to improve upon state-of-the-art performance using mouse alone, although it was expected that adding informants would make patterns of selection clearer. CONTRAST solves this problem by learning to recognize the signature of protein-coding gene selection in a fundamentally different way from previous approaches. Instead of constructing a model of sequence evolution, CONTRAST directly 'learns' which features of a genomic alignment are most useful for recognizing genes. This approach leads to overall higher levels of accuracy and is able to extract useful information from several informant sequences.

... more about:
»CONTRAST »Genome »accuracy »informant »protein-coding

In a test on the human genome, CONTRAST exactly predicted the full structure of 59% of the genes in the test set, compared with the previous best result of 36%. Its exact exon sensitivity of 93%, compared with a previous best of 84%, translates into many thousands of exons correctly predicted by CONTRAST but missed by previous methods. Importantly, CONTRAST's accuracy using a combination of eleven informant genomes was significantly higher than its accuracy using any single informant. The substantial advance in predictive accuracy represented by CONTRAST will further efforts to complete protein-coding gene maps for human and other organisms.

Further information about existing gene-prediction methods and the advance CONTRAST brings to the field can be found in a minireview by Paul Flicek, which accompanies the article by Batzoglou and colleagues.

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral

Further reports about: CONTRAST Genome accuracy informant protein-coding

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>