Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venoms share similar ingredients

20.12.2007
Venoms from different snake families may have many deadly ingredients in common, more than was previously thought. A study published in the online open access journal BMC Molecular Biology has unexpectedly discovered three-finger toxins in a subspecies of the Massasauga Rattlesnake, as well as evidence for a novel toxin genes resulting from gene fusion.

Susanta Pahari from National University of Singapore, Singapore (currently working at Sri Bhagawan Mahaveer Jain College, Bangalore, India) used venom glands from a rare rattlesnake that lives in arid and desert grasslands. Known as Desert Massasauga (Sistrurus catenatus edwardsii), this pitviper is a subspecies of the North American Massasauga Rattlesnake (Sistrurus catenatus).

Together with Stephen Mackessy from the University of Northern Colorado, USA and R. Manjunatha Kini from National University of Singapore, Singapore, Pahari constructed a cDNA library of the snake's venom gland and created 576 tagged sequences. A cocktail of recognized venom toxin sequences was detected in the library, but the venom also contained three-finger toxin-like transcripts, a family of poisons thought only to occur in another family of snakes (Elapidae). The team also spotted a novel toxin-like transcript generated by the fusion of two individual toxin genes, a mechanism not previously observed in toxin evolution. Toxin diversity is usually the result of gene duplication and subsequently neofunctionalization is achieved through several point mutations (called accelerated evolution) on the surface of the protein. Pahari says "In addition to gene duplication, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms."

Previously, researchers identified venom compounds using protein chemistry or individual gene cloning methods. However, less abundant toxins were often missed. The library method has now revealed new toxin genes and even new families of toxins. Taking low abundance toxins into consideration shows advanced snakes' venoms actually have a greater similarity than previously recognized.

... more about:
»Toxin »venom

Snake venoms are complex mixtures of pharmacologically active proteins and peptides. Treating snake venom victims can be complicated because of the variation between venoms even within snake families. Kini says "Such a diversity of toxins provides a gold mine of bioactive polypeptides, which could aid the development of novel therapeutic agents."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcmolbiol/

Further reports about: Toxin venom

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>