Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venoms share similar ingredients

20.12.2007
Venoms from different snake families may have many deadly ingredients in common, more than was previously thought. A study published in the online open access journal BMC Molecular Biology has unexpectedly discovered three-finger toxins in a subspecies of the Massasauga Rattlesnake, as well as evidence for a novel toxin genes resulting from gene fusion.

Susanta Pahari from National University of Singapore, Singapore (currently working at Sri Bhagawan Mahaveer Jain College, Bangalore, India) used venom glands from a rare rattlesnake that lives in arid and desert grasslands. Known as Desert Massasauga (Sistrurus catenatus edwardsii), this pitviper is a subspecies of the North American Massasauga Rattlesnake (Sistrurus catenatus).

Together with Stephen Mackessy from the University of Northern Colorado, USA and R. Manjunatha Kini from National University of Singapore, Singapore, Pahari constructed a cDNA library of the snake's venom gland and created 576 tagged sequences. A cocktail of recognized venom toxin sequences was detected in the library, but the venom also contained three-finger toxin-like transcripts, a family of poisons thought only to occur in another family of snakes (Elapidae). The team also spotted a novel toxin-like transcript generated by the fusion of two individual toxin genes, a mechanism not previously observed in toxin evolution. Toxin diversity is usually the result of gene duplication and subsequently neofunctionalization is achieved through several point mutations (called accelerated evolution) on the surface of the protein. Pahari says "In addition to gene duplication, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms."

Previously, researchers identified venom compounds using protein chemistry or individual gene cloning methods. However, less abundant toxins were often missed. The library method has now revealed new toxin genes and even new families of toxins. Taking low abundance toxins into consideration shows advanced snakes' venoms actually have a greater similarity than previously recognized.

... more about:
»Toxin »venom

Snake venoms are complex mixtures of pharmacologically active proteins and peptides. Treating snake venom victims can be complicated because of the variation between venoms even within snake families. Kini says "Such a diversity of toxins provides a gold mine of bioactive polypeptides, which could aid the development of novel therapeutic agents."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcmolbiol/

Further reports about: Toxin venom

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>