Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant gene identified as villain in hardening of the arteries

19.12.2007
A genetic mutation expands lesions in the aorta and promotes coronary atherosclerosis, more commonly known as hardening of the arteries, according to a study by Yale School of Medicine in Cell Metabolism.

The researchers found that mice engineered without the Akt1 gene and fed a high cholesterol diet had many more signs of aortic atherosclerosis compared to their littermates. And, surprisingly, their coronary lesions were similar to humans, say the scientists.

“About 20 percent of the mice died spontaneously, perhaps due to an acute heart attack,” said William Sessa, senior author of the study, professor of pharmacology, and director of Yale’s vascular biology and therapeutics program.

Atherosclerosis is a chronic inflammatory response in arterial walls, in large part due to deposits of lipoproteins—which are plasma proteins that carry cholesterol and triglycerides. The "hardening" or "furring" of the arteries is caused by plaque formation.

... more about:
»Coronary »arteries »hardening »lesions »promote

In the vascular wall, Akt plays an important role in regulating the development of endothelial cells, which line the entire circulatory system, from the heart to the smallest capillary. Endothelial cells play an important role in regulating blood pressure, in blood clotting, in plaque formation in the arteries, and in formation of new blood vessels.

“The major finding of this study is that an absence of Akt1 aggravates atherosclerotic lesions, promotes coronary atherosclerosis, and may be a model of acute coronary syndromes,” Sessa said. “Specific activation of Akt1 may provide a therapeutic approach to decrease formation of lesions in the arterial wall and promote plaque stabilization to prevent an acute heart attack.”

One concern, he said, is that specific drugs are being developed to inhibit Akt in cancer patients to reduce progression of tumors, and that these drugs may also promote hardening of the arteries.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Coronary arteries hardening lesions promote

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>