Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists identify and repress breast cancer stem cells in mouse tissue

19.12.2007
An approach based on the manipulation of microRNAs

By manipulating highly specific gene-regulating molecules called microRNAs, scientists at Cold Spring Harbor Laboratory (CSHL) report that they have succeeded in singling out and repressing stem-like cells in mouse breast tissue – cells that are widely thought to give rise to cancer.

“If certain forms of breast cancer do indeed have their origin in wayward stem cells, as we believe to be the case, then it is critical to find ways to selectively attack that tumor-initiating population,” said Gregory Hannon, Ph.D., CSHL professor and Howard Hughes Medical Institute Investigator. Hannon also is head of a lab focusing on small-RNA research at CSHL and corresponding author of a paper reporting the new research, published in the latest issue of Genes and Development.

“We have shown that a microRNA called let-7, whose expression has previously been associated with tumor suppression, can be delivered to a sample of breast-tissue cells, where it can help us to distinguish stem-like tumor-initiating cells from other, more fully developed cells in the sample. Even more exciting, we found that by expressing let-7 in the sample, we were able to attack and essentially eliminate, very specifically, just that subpopulation of potentially dangerous progenitor cells.”

... more about:
»CSHL »Hannon »MicroRNA »progenitor »sample »stem-like

The study was done in collaboration with Senthil Muthuswamy Ph.D., an expert in breast cancer research who heads a CSHL lab focusing on understanding the changes in the biology of breast epithelial cells during the initiation and progression of cancer. Dr. Muthuswamy emphasized that a key ingredient that made this study successful is the use of a mouse breast-derived model cell system called COMMA-1D that not only includes differentiated cells but also stem-like progenitors, in varying stages of maturity, or differentiation.

Unexpected Impact of Conventional Chemotherapy

No therapies currently exist that target stem-like tumor-initiating cells, whose existence in diverse tissues including breast, lung, brain and colon, as well as in the blood, has been demonstrated in a line of research stretching back to 2001. In that year, John E. Dick of the University of Toronto identified cancer stem cells in the blood of leukemia patients.

The cancer stem cell hypothesis is controversial, in part, because of the challenge it represents for current cancer therapy, which regards all tumor cells as potentially capable of spreading the disease, and which seeks to reduce tumor mass and destroy the maximum possible number of tumor cells. In the cancer stem cell hypothesis, reduction of tumor volume alone will not suffice if the stem cells which originally gave rise to the cancer are not specifically targeted and destroyed.

The new Cold Spring Harbor Laboratory research not only suggests one possible way of accomplishing this therapeutic goal – the Hannon lab is initiating a demonstration study in mice – but it also demonstrated that one component of a chemotherapy cocktail currently used as first-line therapy against certain kinds of breast cancer has the potential to actually enrich the subpopulation of stem-like cells that serve as cancer progenitors.

“We found that administration of cyclophosphamide in our mouse cell sample had the effect of enriching for these cells,” Hannon said, “which suggests that we need to look carefully at these therapies in model systems to see if the effects we see in cell culture are mirrored in real tumors – and then, to gauge what effect that has on metastasis and relapse following therapy.”

It has been known for some time that stem and progenitor cells possess unique defenses, as compared with mature, or differentiated cells, which, unlike their stem-like “mothers” do not have the capacity to renew themselves or to generate multiple cell-types. Stem cells, for instance, are thought to be able to “pump” toxins out of their cellular domain, much as do fully differentiated tumor cells that have developed resistance to chemotherapy.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL Hannon MicroRNA progenitor sample stem-like

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>