Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists identify and repress breast cancer stem cells in mouse tissue

19.12.2007
An approach based on the manipulation of microRNAs

By manipulating highly specific gene-regulating molecules called microRNAs, scientists at Cold Spring Harbor Laboratory (CSHL) report that they have succeeded in singling out and repressing stem-like cells in mouse breast tissue – cells that are widely thought to give rise to cancer.

“If certain forms of breast cancer do indeed have their origin in wayward stem cells, as we believe to be the case, then it is critical to find ways to selectively attack that tumor-initiating population,” said Gregory Hannon, Ph.D., CSHL professor and Howard Hughes Medical Institute Investigator. Hannon also is head of a lab focusing on small-RNA research at CSHL and corresponding author of a paper reporting the new research, published in the latest issue of Genes and Development.

“We have shown that a microRNA called let-7, whose expression has previously been associated with tumor suppression, can be delivered to a sample of breast-tissue cells, where it can help us to distinguish stem-like tumor-initiating cells from other, more fully developed cells in the sample. Even more exciting, we found that by expressing let-7 in the sample, we were able to attack and essentially eliminate, very specifically, just that subpopulation of potentially dangerous progenitor cells.”

... more about:
»CSHL »Hannon »MicroRNA »progenitor »sample »stem-like

The study was done in collaboration with Senthil Muthuswamy Ph.D., an expert in breast cancer research who heads a CSHL lab focusing on understanding the changes in the biology of breast epithelial cells during the initiation and progression of cancer. Dr. Muthuswamy emphasized that a key ingredient that made this study successful is the use of a mouse breast-derived model cell system called COMMA-1D that not only includes differentiated cells but also stem-like progenitors, in varying stages of maturity, or differentiation.

Unexpected Impact of Conventional Chemotherapy

No therapies currently exist that target stem-like tumor-initiating cells, whose existence in diverse tissues including breast, lung, brain and colon, as well as in the blood, has been demonstrated in a line of research stretching back to 2001. In that year, John E. Dick of the University of Toronto identified cancer stem cells in the blood of leukemia patients.

The cancer stem cell hypothesis is controversial, in part, because of the challenge it represents for current cancer therapy, which regards all tumor cells as potentially capable of spreading the disease, and which seeks to reduce tumor mass and destroy the maximum possible number of tumor cells. In the cancer stem cell hypothesis, reduction of tumor volume alone will not suffice if the stem cells which originally gave rise to the cancer are not specifically targeted and destroyed.

The new Cold Spring Harbor Laboratory research not only suggests one possible way of accomplishing this therapeutic goal – the Hannon lab is initiating a demonstration study in mice – but it also demonstrated that one component of a chemotherapy cocktail currently used as first-line therapy against certain kinds of breast cancer has the potential to actually enrich the subpopulation of stem-like cells that serve as cancer progenitors.

“We found that administration of cyclophosphamide in our mouse cell sample had the effect of enriching for these cells,” Hannon said, “which suggests that we need to look carefully at these therapies in model systems to see if the effects we see in cell culture are mirrored in real tumors – and then, to gauge what effect that has on metastasis and relapse following therapy.”

It has been known for some time that stem and progenitor cells possess unique defenses, as compared with mature, or differentiated cells, which, unlike their stem-like “mothers” do not have the capacity to renew themselves or to generate multiple cell-types. Stem cells, for instance, are thought to be able to “pump” toxins out of their cellular domain, much as do fully differentiated tumor cells that have developed resistance to chemotherapy.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL Hannon MicroRNA progenitor sample stem-like

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>