Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA interference therapy heals growth deficiency disorder in a live animal

19.12.2007
A team of Vanderbilt researchers have demonstrated for the first time that a new type of gene therapy, called RNA interference, can heal a genetic disorder in a live animal.

The study, which was published online Nov. 15 by the journal Endocrinology, shows that RNA interference can “rescue” a strain of mouse that has been genetically engineered to express a defective human hormone that interferes with normal growth. When the gene that produces the defective human growth hormone is inserted into the mouse’s genome, it also stunts the mouse’s growth. But when a small snippet of RNA that interferes with the hormone’s production is also added, the mouse is restored to normal.

“It has been very satisfying to figure out the underlying cause of this genetic disorder and then identify a way to prevent it,” says John Phillips, the David T. Karzon Professor of Pediatrics at the Vanderbilt University Medical Center, who has been studying human growth deficiency disorders since 1978. He collaborated on the research with graduate students Nikki Shariat and Robin Ryther, who are directed by Professor of Biological Sciences James G. Patton.

Growth hormone deficiency has been estimated to occur in between one in 4,000 to 10,000 children. It has a number of different causes, but one that is genetically inherited is called Isolated Growth Hormone Deficiency type II, and this is the subject of the study.

Children with IGHD-II appear fairly normal at birth but do not gain weight or grow as fast as they should, and their bones do not mature properly. The current treatment consists of daily injections of growth hormone for years until the patients reach their adult height. Not only is this treatment extremely expensive, it also fails to correct the underlying source of the problem: deterioration and death of cells in the pituitary gland that produce growth hormone. As a result, this single hormone deficiency can develop into multi-hormonal deficiency over time.

IGHD-II is what geneticists call a dominant negative disorder. It is caused by a defective form of human growth hormone that not only can’t stimulate growth itself but also blocks the action of normal growth hormone. “It acts like Aesop’s dog in the manger … which has no use for the hay but keeps the cows from eating,” says Phillips. Some other common dominant negative diseases include forms of colon cancer, deafness, muscular dystrophy, brittle bone disease, kidney disease and retinitis pigmentosa.

The blueprint for a protein like growth hormone is genetically encoded in a series of special segments called exons. The instructions in the exons are first copied onto a length of special RNA, called messenger-RNA. The messenger-RNA is moved to a structure in the cell called a ribosome, which links amino acids together in the order specified by the RNA sequence to create the protein.

Normal growth hormone is produced by a series of five exons. The defective hormone is the result of a splicing error: It is made by combining the segments coded by the first two exons and the last two exons, mistakenly skipping the third exon.

“A normal person has a very small amount of this defective hormone – about 1 percent – but people in families with IGHD-II produce 10 to 20 to 50 percent. And the more they make the slower they grow,” says Patton.

In 2003, co-author Iain Robinson at the National Institute for Medical Research in London created a transgenic mouse with the human growth hormone gene that duplicated growth hormone deficiency. Although the altered mice still contained the mouse growth hormone genes, he found that high levels of the defective human growth hormone not only stunted their growth but actually killed the cells in the pituitary that produce growth hormone.

“This came as a real surprise: We never thought that a splicing error would lead to cell death,” says Patton.

Meanwhile, progress in RNA interference research gave Patton and Phillips an idea for a way to correct this disorder.

In the last 15 years, scientists have realized that short pieces of double-stranded RNA, called silencing-RNA, use a pathway that is normally used by cells to regulate genes. This has created an opportunity for developing highly targeted therapies for a number of genetic diseases including macular degeneration in the eye and to block viruses such as herpes and RSV respiratory viruses. “To the best of our knowledge, this is the first time it has been used to correct a dominant negative disorder in a living animal,” says Patton.

The researchers realized that the messenger-RNA that produced the defective hormone had a unique signature created by skipping the third exon. This allowed the Patton lab to create a specific silencing-RNA, designed to bind uniquely with the defective messenger-RNA.

“You might call this the ‘if you don’t like the message, kill the messenger’ approach,” Phillips quips.

Having created the special silencing-RNA, the next problem was how to deliver it to the pituitary gland which, in the case of the mouse, is the size of a grain of uncooked rice and is located at the base of the brain. As a proof of concept, the researchers decided to create a second strain of mouse which carried the special silencing-RNA and mate them with the growth deficiency strain. Their offspring should have both the genetic defect that produces the defective growth hormone and the silencing-RNA that should inhibit its production, allowing the mouse growth hormone to act.

The experiment was successful. The offspring grew normally and showed no defects in their pituitaries.

Now the researchers are investigating ways to deliver their silencing-RNA to the pituitary gland that would be suitable for treating humans. The cells that produce growth hormone have special receptors that signal the cells to release their stocks of growth hormone. If they can figure out a way to attach the silencing-RNAs to a compound that binds to this receptor, they should be able to deliver them to the cells where they can interfere with the activity of the defective growth hormone.

The research was funded by a grant from the National Institutes of Health.

Vanderbilt University is a private research university of approximately 6,300 undergraduates and 4,600 graduate and professional students. Founded in 1873, the University comprises 10 schools, a public policy institute, a distinguished medical center and The Freedom Forum First Amendment Center. Vanderbilt, ranked as one of the nation’s top universities, offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development, and a full range of graduate and professional degrees.

For more news about Vanderbilt, visit the News Service homepage at www.vanderbilt.edu/News.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu/exploration/stories/sirna.html
http://www.vanderbilt.edu/News

Further reports about: Exon Interference Messenger-RNA Phillips RNA defective deficiency interfere pituitary silencing-RNA

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>