Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Identification of new genes shows a complex path to cell death

UMass Medical School investigators define multi-step pathway that allows for cell survival and death

Can a tiny winged insect’s salivary glands really tell us about processes relevant to human disease" Yes, according to a new study by researchers at the University of Massachusetts Medical School (UMMS), who gained new insights into autophagy—a cellular degradation process associated with a form of programmed cell death—by studying the salivary gland cells of the fruit fly.

Since its initial discovery in the 1960s, programmed cell death has been a primary focus of studies for investigators across a wide array of scientific disciplines. An essential mechanism in development and homeostasis, programmed cell death allows for the clean intracellular destruction of unnecessary or damaged cells. While apoptosis is the most understood type of programmed cell death, recently scientists have begun to take a closer look at autophagy— a highly regulated, catabolic process that essentially allows a cell to eat itself. Paradoxically, autophagy is not only a major mechanism by which a starving cell reallocates nutrients to ensure survival, scientists are now demonstrating that autophagy also provides cells that cannot undergo apoptosis with an alternate form of self-destruction.

In “Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila,” published in the December 14 issue of Cell, Eric Baehrecke, PhD, UMMS Associate Professor of Cancer Biology, and colleagues examined fly salivary glands, which contain all of the machinery required to dismantle and recycle their own cellular components and thus provide a genetic model system for elucidating the complex functions of autophagy. The paper describes the cellular components required for autophagic cell death and defines multiple pathways that cooperate in the clearance of cells during fly development. Further, their findings demonstrate a critical relationship between growth and this form of cell death.

“When cells keep growing, they don’t die well,” Dr. Baehrecke explained. “We show that an arrest of growth preceded the death of these cells. If we maintain growth by turning on certain genes, we can block the death of these cells, and this has potential clinical implications. Therapies directed at apoptotic mechanisms have resulted in limited success; we hope that further studies of autophagy could lead to new approaches to the treatment of human disease.”

“It’s becoming increasingly important to understand how the various cell death pathways connect and how they affect development, the stress response, and disease,” said Marion Zatz, PhD, who oversees cell death grants at the National Institute of General Medical Sciences, which funded the work. “While this research was done in fruit flies, findings made in model organisms are often the first step in understanding what goes on in humans. By shedding light on autophagic cell death, this work may help explain the pathway’s role in human diseases such as cancer, Alzheimer’s and Parkinson’s.”

“The role of autophagy during cell death remains controversial but is important to our understanding and treatment of many human disorders including cancer and neurodegeneration,” Baehrecke said. “It is important to understand the relationship between autophagy and cell death, as the association of autophagy with cell growth, nutrient utilization, survival and death indicates that this catabolic process is relevant to the treatment of many human disorders including cancer.”

Kelly Bishop | EurekAlert!
Further information:

Further reports about: autophagy cell death gland pathway programmed cell death salivary

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>