Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of new genes shows a complex path to cell death

18.12.2007
UMass Medical School investigators define multi-step pathway that allows for cell survival and death

Can a tiny winged insect’s salivary glands really tell us about processes relevant to human disease" Yes, according to a new study by researchers at the University of Massachusetts Medical School (UMMS), who gained new insights into autophagy—a cellular degradation process associated with a form of programmed cell death—by studying the salivary gland cells of the fruit fly.

Since its initial discovery in the 1960s, programmed cell death has been a primary focus of studies for investigators across a wide array of scientific disciplines. An essential mechanism in development and homeostasis, programmed cell death allows for the clean intracellular destruction of unnecessary or damaged cells. While apoptosis is the most understood type of programmed cell death, recently scientists have begun to take a closer look at autophagy— a highly regulated, catabolic process that essentially allows a cell to eat itself. Paradoxically, autophagy is not only a major mechanism by which a starving cell reallocates nutrients to ensure survival, scientists are now demonstrating that autophagy also provides cells that cannot undergo apoptosis with an alternate form of self-destruction.

In “Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila,” published in the December 14 issue of Cell, Eric Baehrecke, PhD, UMMS Associate Professor of Cancer Biology, and colleagues examined fly salivary glands, which contain all of the machinery required to dismantle and recycle their own cellular components and thus provide a genetic model system for elucidating the complex functions of autophagy. The paper describes the cellular components required for autophagic cell death and defines multiple pathways that cooperate in the clearance of cells during fly development. Further, their findings demonstrate a critical relationship between growth and this form of cell death.

“When cells keep growing, they don’t die well,” Dr. Baehrecke explained. “We show that an arrest of growth preceded the death of these cells. If we maintain growth by turning on certain genes, we can block the death of these cells, and this has potential clinical implications. Therapies directed at apoptotic mechanisms have resulted in limited success; we hope that further studies of autophagy could lead to new approaches to the treatment of human disease.”

“It’s becoming increasingly important to understand how the various cell death pathways connect and how they affect development, the stress response, and disease,” said Marion Zatz, PhD, who oversees cell death grants at the National Institute of General Medical Sciences, which funded the work. “While this research was done in fruit flies, findings made in model organisms are often the first step in understanding what goes on in humans. By shedding light on autophagic cell death, this work may help explain the pathway’s role in human diseases such as cancer, Alzheimer’s and Parkinson’s.”

“The role of autophagy during cell death remains controversial but is important to our understanding and treatment of many human disorders including cancer and neurodegeneration,” Baehrecke said. “It is important to understand the relationship between autophagy and cell death, as the association of autophagy with cell growth, nutrient utilization, survival and death indicates that this catabolic process is relevant to the treatment of many human disorders including cancer.”

Kelly Bishop | EurekAlert!
Further information:
http://www.umassmed.edu

Further reports about: autophagy cell death gland pathway programmed cell death salivary

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>