Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of new genes shows a complex path to cell death

18.12.2007
UMass Medical School investigators define multi-step pathway that allows for cell survival and death

Can a tiny winged insect’s salivary glands really tell us about processes relevant to human disease" Yes, according to a new study by researchers at the University of Massachusetts Medical School (UMMS), who gained new insights into autophagy—a cellular degradation process associated with a form of programmed cell death—by studying the salivary gland cells of the fruit fly.

Since its initial discovery in the 1960s, programmed cell death has been a primary focus of studies for investigators across a wide array of scientific disciplines. An essential mechanism in development and homeostasis, programmed cell death allows for the clean intracellular destruction of unnecessary or damaged cells. While apoptosis is the most understood type of programmed cell death, recently scientists have begun to take a closer look at autophagy— a highly regulated, catabolic process that essentially allows a cell to eat itself. Paradoxically, autophagy is not only a major mechanism by which a starving cell reallocates nutrients to ensure survival, scientists are now demonstrating that autophagy also provides cells that cannot undergo apoptosis with an alternate form of self-destruction.

In “Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila,” published in the December 14 issue of Cell, Eric Baehrecke, PhD, UMMS Associate Professor of Cancer Biology, and colleagues examined fly salivary glands, which contain all of the machinery required to dismantle and recycle their own cellular components and thus provide a genetic model system for elucidating the complex functions of autophagy. The paper describes the cellular components required for autophagic cell death and defines multiple pathways that cooperate in the clearance of cells during fly development. Further, their findings demonstrate a critical relationship between growth and this form of cell death.

“When cells keep growing, they don’t die well,” Dr. Baehrecke explained. “We show that an arrest of growth preceded the death of these cells. If we maintain growth by turning on certain genes, we can block the death of these cells, and this has potential clinical implications. Therapies directed at apoptotic mechanisms have resulted in limited success; we hope that further studies of autophagy could lead to new approaches to the treatment of human disease.”

“It’s becoming increasingly important to understand how the various cell death pathways connect and how they affect development, the stress response, and disease,” said Marion Zatz, PhD, who oversees cell death grants at the National Institute of General Medical Sciences, which funded the work. “While this research was done in fruit flies, findings made in model organisms are often the first step in understanding what goes on in humans. By shedding light on autophagic cell death, this work may help explain the pathway’s role in human diseases such as cancer, Alzheimer’s and Parkinson’s.”

“The role of autophagy during cell death remains controversial but is important to our understanding and treatment of many human disorders including cancer and neurodegeneration,” Baehrecke said. “It is important to understand the relationship between autophagy and cell death, as the association of autophagy with cell growth, nutrient utilization, survival and death indicates that this catabolic process is relevant to the treatment of many human disorders including cancer.”

Kelly Bishop | EurekAlert!
Further information:
http://www.umassmed.edu

Further reports about: autophagy cell death gland pathway programmed cell death salivary

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>