Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanical insights into wound healing and scar tissue formation

18.12.2007
Cellular “Popeyes” respond to stress and transform into muscle-bound wound-healers

New research published today in the Journal of Cell Biology illuminates the mechanical factors that play a critical role in the differentiation and function of fibroblasts, connective tissue cells that play a role in wound healing and scar tissue formation.

When we are injured, the body launches a complex rescue operation. Specialized cells called fibroblasts lurking just beneath the surface of the skin jump into action, enter the provisional wound matrix (the clot) and start secreting collagen to close the wound as fast as possible. This matrix is initially soft and loaded with growth factors. The fibroblasts “crawl” around the matrix, pulling and reorganizing the fibers. The matrix grows stiffer, and at a certain point, the fibroblasts stop migrating and, like Popeye, change into powerful contractile cells, anchoring themselves to the matrix and pulling the edges of the wound together.

The research reported today reveals for the first time that a mechanical mechanism is crucial for this switch from migrating to contractile cells. To make this change, the fibroblasts need to get at their “spinach” – the growth factor sitting in the matrix which, once liberated, stimulates the production of smooth-muscle proteins. Previously, researchers postulated that the fibroblasts did this by digesting the matrix. But EPFL scientist Boris Hinz, doctoral student Pierre-Jean Wipff and their colleagues have discovered that the cells unlock the growth factor via a purely mechanical process. With experiments using novel cell culture substrates of varying rigidity, they found that at a certain point, the matrix is sufficiently rigid that cell-exerted force allows the growth factor to pop out, like candy from a wrapper. Once the growth factor is available, the fibroblast expresses the contractile proteins, sticks more firmly to the matrix and starts to contract, pulling the matrix tightly together. In the process it liberates yet more growth factor that in turn stimulates other fibroblasts to become contractile. The mechanical nature of the switch ensures that the contraction only develops when the matrix is “ready.”

... more about:
»Fibroblast »Matrix »SCAR »contractile »function »mechanical

Although this process will heal a wound quickly, if left unchecked, it can also lead to a buildup of fibrous tissue. Following trauma to vital organs such as the heart, lung, liver and kidney, overzealous fibroblasts can continue to build fibrous strands, leading to scar tissue buildup that can impair the organ’s function. This condition, called “fibrosis”, can be fatal. Fibroblasts are also the culprits in problems caused by implants – if the implant is too smooth, it never becomes properly incorporated into the connective tissue. But if it is too rough, scar tissue develops around it and it won’t function properly. Occasionally, following plastic surgery, unsightly excessive scar tissue can develop in the skin as well. The process can also cause problems in mesenchymal stem cell cultures – if the culture’s substrate is stiff, considerable efforts have to be made to prevent the stem cells from turning prematurely into fibroblasts instead of the desired cell type. Controlling the rigidity of the cell culture is therefore critical.

This new understanding of the mechanical nature of fibroblast activation could be used to reduce or prevent fibrosis from occurring, says Hinz, without inhibiting the growth factor, which serves many other vital functions in the body. There are several possibilities: “You could interfere with the way the cells grab onto the growth factor complex, you could interfere with their attachment points on the matrix, and you could interfere with their contractile forces so that the matrix never gets stiff enough to liberate the growth factor,” he suggests.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Fibroblast Matrix SCAR contractile function mechanical

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>