Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An ambulance man for muscle damage

Scientists harness a natural emergency response to increase the regeneration ability of muscle

It does not take much to injure a muscle. Sometimes one sudden, inconsiderate movement does the job. Unfortunately, damaged muscles are not as efficient at repair as other tissues such as bone. Researchers of the European Molecular Biology Laboratory’s Mouse Biology Unit (EMBL), Italy, and the Harefield Heart Science Centre of Imperial College London, have now discovered a molecular signal that helps muscle regenerate and protects it from atrophy. In this week’s issue of the Journal of Cell Biology they report that the naturally occurring protein is a promising candidate for new strategies in treating muscle damage and wasting.

Muscle regeneration after injury is complex and requires a coordinated interplay between many different processes. Key players in regeneration are muscle stem cells, so-called satellite cells. They divide and produce many new muscle cells to fix the damage incurred by injury. A crucial regulator of muscle function and repair is a signalling molecule called calcineurin. It is activated by injury and controls the activity of other key proteins involved in differentiation and the response to damage.

Nadia Rosenthal, head of EMBL’s Mouse Biology Unit, and her team have now found a naturally occurring version of calcineurin, called CnAß1 that is permanently active and uncouples the protein’s activity from injury signals. The expression of CnAß1, however, is tightly regulated. It is expressed from the same gene as other versions of the calcineurin Aß subunit that are not permanently active. CnAß1 gains its unique properties by a process called RNA splicing. When the gene has been copied from DNA into RNA certain pieces of information are cut out of the RNA molecule and will not make part of the protein. This is why CnAß1 lacks a regulatory site that normally represses its activity.

... more about:
»Calcineurin »CnAß1 »injury

“This system allows flexible reaction to muscle injury,” says Rosenthal. “Permanently active CnAß1 is expressed only in proliferating stem cells and regenerating muscles, suggesting it as something like an ambulance man that is called only in response to muscle damage.”

To test the effects of permanent CnAß1 expression Enrique Lara-Pezzi from Rosenthal’s lab overexpessed CnAß1 in muscle cells, and observed increased proliferation of muscle stem cells. Switching off the protein had the opposite effect; stem cells stopped dividing and differentiated into muscle cells instead. When CnAß1 was overexpressed in the muscles of transgenic mice, the animals were resistant to the destructive effects of muscle injury and regenerated the damage more efficiently.

Using sophisticated molecular techniques the scientists revealed that calcineurin accomplishes its effect on muscle by inhibiting another protein called FoxO. FoxO is a transcription factor, a protein that plays a crucial role in skeletal muscle atrophy through the induction of genes involved in cell cycle repression and protein degradation. Suppressing the effects of FoxO, calcineurin ensures that proliferating cells stay alive and keep dividing to produce enough cells to repair muscle damage.

“Supplementary CnAß1 also reduces the formation of scars in damaged muscle, helps speed up the resolution of inflammation and protects muscle cells from atrophy under starvation,” says Rosenthal. “These effects make CnAß1 a promising candidate for new therapeutic approaches against muscle wasting.”

Published on 17 December in Journal of Cell Biology.

Anna-Lynn Wegener
Press Officer
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525

Anna-Lynn Wegener | EMBL
Further information:

Further reports about: Calcineurin CnAß1 injury

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>