Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An ambulance man for muscle damage

18.12.2007
Scientists harness a natural emergency response to increase the regeneration ability of muscle

It does not take much to injure a muscle. Sometimes one sudden, inconsiderate movement does the job. Unfortunately, damaged muscles are not as efficient at repair as other tissues such as bone. Researchers of the European Molecular Biology Laboratory’s Mouse Biology Unit (EMBL), Italy, and the Harefield Heart Science Centre of Imperial College London, have now discovered a molecular signal that helps muscle regenerate and protects it from atrophy. In this week’s issue of the Journal of Cell Biology they report that the naturally occurring protein is a promising candidate for new strategies in treating muscle damage and wasting.

Muscle regeneration after injury is complex and requires a coordinated interplay between many different processes. Key players in regeneration are muscle stem cells, so-called satellite cells. They divide and produce many new muscle cells to fix the damage incurred by injury. A crucial regulator of muscle function and repair is a signalling molecule called calcineurin. It is activated by injury and controls the activity of other key proteins involved in differentiation and the response to damage.

Nadia Rosenthal, head of EMBL’s Mouse Biology Unit, and her team have now found a naturally occurring version of calcineurin, called CnAß1 that is permanently active and uncouples the protein’s activity from injury signals. The expression of CnAß1, however, is tightly regulated. It is expressed from the same gene as other versions of the calcineurin Aß subunit that are not permanently active. CnAß1 gains its unique properties by a process called RNA splicing. When the gene has been copied from DNA into RNA certain pieces of information are cut out of the RNA molecule and will not make part of the protein. This is why CnAß1 lacks a regulatory site that normally represses its activity.

... more about:
»Calcineurin »CnAß1 »injury

“This system allows flexible reaction to muscle injury,” says Rosenthal. “Permanently active CnAß1 is expressed only in proliferating stem cells and regenerating muscles, suggesting it as something like an ambulance man that is called only in response to muscle damage.”

To test the effects of permanent CnAß1 expression Enrique Lara-Pezzi from Rosenthal’s lab overexpessed CnAß1 in muscle cells, and observed increased proliferation of muscle stem cells. Switching off the protein had the opposite effect; stem cells stopped dividing and differentiated into muscle cells instead. When CnAß1 was overexpressed in the muscles of transgenic mice, the animals were resistant to the destructive effects of muscle injury and regenerated the damage more efficiently.

Using sophisticated molecular techniques the scientists revealed that calcineurin accomplishes its effect on muscle by inhibiting another protein called FoxO. FoxO is a transcription factor, a protein that plays a crucial role in skeletal muscle atrophy through the induction of genes involved in cell cycle repression and protein degradation. Suppressing the effects of FoxO, calcineurin ensures that proliferating cells stay alive and keep dividing to produce enough cells to repair muscle damage.

“Supplementary CnAß1 also reduces the formation of scars in damaged muscle, helps speed up the resolution of inflammation and protects muscle cells from atrophy under starvation,” says Rosenthal. “These effects make CnAß1 a promising candidate for new therapeutic approaches against muscle wasting.”

Published on 17 December in Journal of Cell Biology.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2007/17dec07/

Further reports about: Calcineurin CnAß1 injury

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>