Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological physics creates diagnostics of the future

17.12.2007
Chalmers University of Technology in Sweden is about to enter a new field of research - biological physics. The aim is to develop biomedical instruments and methods for basic research and for applications within pharmaceutical development and medical diagnostics. Professor Fredrik Höök has been recruited by Chalmers to head this research group.

Professor Höök, who for the past three years has been Professor of Nanoscience for Biophysics at Lund University, is just one in a series of recruitments which Chalmers has made within bioscience. This time the base is in physics and is linked to current research within materials science and nanotechnology. Fredrik Höök is also an entrepreneur and is expected to become a key link between Chalmers and the biotechnology industry in Sweden.

"Chalmers is building on the already successful environment in applied physics. Fredrik Höök's work represents yet another step towards satisfying needs and realising potential within biology and medical applications. The interface between natural science, engineering and medicine can benefit from the unique conditions that exist in Gothenburg. This is expected to lead to new technologies and innovations which could reinforce Swedish healthcare and industry even further. I am convinced that Fredrik Höök will capitalise on these opportunities and develop them optimally together with his fellow researchers," says Chalmers President Karin Markides.

Fredrik Höök's research deals with the development of instrumentation and techniques for improved diagnostics and pharmaceutical development. As a PhD student at Chalmers he was involved in founding the company Q-Sense, which manufactures and sells measuring instruments which are used throughout the world by researchers at universities and hospitals as well as developers in industry. The instruments are used primarily to study how biomolecules interact with different materials, which is a key component in the development of diagnostic sensors. Some years after taking his PhD he was offered a professorship in Lund, where his research group developed a completely new method for analysing membrane proteins.

... more about:
»AIM »Diagnostic »Fredrik »Höök »Pharmaceutical »Physics

"We are seeking to use new concepts within nanotechnology coupled with the most recent advances in molecular biology to develop more effective sensors and analysis instruments. The aim is more rapid detection of diseases at an earlier stage. We want to improve existing clinical instruments and develop new ones in order to increase accuracy and reduce cost. Our instruments should be available for use at companies working on pharmaceutical development as well as in hospitals for diagnostic purposes," says Fredrik Höök.

The aim of the research group is to detect disease markers on the individual molecule level. At present, millions of molecules are often needed in a blood sample in order to confirm a disease.

Strong research at Chalmers within areas such as soft materials, supermolecular chemistry and biological imaging will be a significant advantage. Co-operation with the Chalmers Biocentre and Sahlgrenska University Hospital will also make it possible to get even closer to the fundamentals of biology and medicine in a completely new way.

Fredrik Höök feels that world-class research in itself is not enough:

"We have worked our way through to the research front line. The aim now is to get past it and become the leader in the field although we will not succeed in this as an independent research group. We must co-operate with several different disciplines.

As a spin-off from our research we have learnt a great deal about cell membranes and how they melt together. This knowledge is vital within pharmaceutical distribution - a new field of interest for us. It is possible to deal with diseases in a completely new way one you have succeeded in getting past the barrier which the membrane represents and can send the drug directly into the diseased cells. Nature has already solved this in the marvellous process where a sperm and an egg merge. We want to learn how to make use of that principle so that one day we can deliver a drug directly to a predetermined place in the body, such as a cancer cell."

He will also bring with him to Chalmers a research group which will be integrated with the biologically oriented work previously led by Bengt Kasemo at the Department of Chemical Physics.

"There will be a broad range of expertise in the group. We are looking forward to working with different researchers at Chalmers, such as physicists, chemists, bioengineers and electrical engineers. The most gratifying aspect of my work is working with young people with a thirst for knowledge. I also hope to make a strong contribution to undergraduate education at Chalmers."

Contact and more information: Fredrik Höök +46-31 772 61 09; fredrik.hook@chalmers.se

Pressofficer Sofie Hebrand; sofie.hebrand@chalmers.se; +46 736-79 35 90

Sofie Hebrand | idw
Further information:
http://www.vr.se

Further reports about: AIM Diagnostic Fredrik Höök Pharmaceutical Physics

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>