Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biological physics creates diagnostics of the future

Chalmers University of Technology in Sweden is about to enter a new field of research - biological physics. The aim is to develop biomedical instruments and methods for basic research and for applications within pharmaceutical development and medical diagnostics. Professor Fredrik Höök has been recruited by Chalmers to head this research group.

Professor Höök, who for the past three years has been Professor of Nanoscience for Biophysics at Lund University, is just one in a series of recruitments which Chalmers has made within bioscience. This time the base is in physics and is linked to current research within materials science and nanotechnology. Fredrik Höök is also an entrepreneur and is expected to become a key link between Chalmers and the biotechnology industry in Sweden.

"Chalmers is building on the already successful environment in applied physics. Fredrik Höök's work represents yet another step towards satisfying needs and realising potential within biology and medical applications. The interface between natural science, engineering and medicine can benefit from the unique conditions that exist in Gothenburg. This is expected to lead to new technologies and innovations which could reinforce Swedish healthcare and industry even further. I am convinced that Fredrik Höök will capitalise on these opportunities and develop them optimally together with his fellow researchers," says Chalmers President Karin Markides.

Fredrik Höök's research deals with the development of instrumentation and techniques for improved diagnostics and pharmaceutical development. As a PhD student at Chalmers he was involved in founding the company Q-Sense, which manufactures and sells measuring instruments which are used throughout the world by researchers at universities and hospitals as well as developers in industry. The instruments are used primarily to study how biomolecules interact with different materials, which is a key component in the development of diagnostic sensors. Some years after taking his PhD he was offered a professorship in Lund, where his research group developed a completely new method for analysing membrane proteins.

... more about:
»AIM »Diagnostic »Fredrik »Höök »Pharmaceutical »Physics

"We are seeking to use new concepts within nanotechnology coupled with the most recent advances in molecular biology to develop more effective sensors and analysis instruments. The aim is more rapid detection of diseases at an earlier stage. We want to improve existing clinical instruments and develop new ones in order to increase accuracy and reduce cost. Our instruments should be available for use at companies working on pharmaceutical development as well as in hospitals for diagnostic purposes," says Fredrik Höök.

The aim of the research group is to detect disease markers on the individual molecule level. At present, millions of molecules are often needed in a blood sample in order to confirm a disease.

Strong research at Chalmers within areas such as soft materials, supermolecular chemistry and biological imaging will be a significant advantage. Co-operation with the Chalmers Biocentre and Sahlgrenska University Hospital will also make it possible to get even closer to the fundamentals of biology and medicine in a completely new way.

Fredrik Höök feels that world-class research in itself is not enough:

"We have worked our way through to the research front line. The aim now is to get past it and become the leader in the field although we will not succeed in this as an independent research group. We must co-operate with several different disciplines.

As a spin-off from our research we have learnt a great deal about cell membranes and how they melt together. This knowledge is vital within pharmaceutical distribution - a new field of interest for us. It is possible to deal with diseases in a completely new way one you have succeeded in getting past the barrier which the membrane represents and can send the drug directly into the diseased cells. Nature has already solved this in the marvellous process where a sperm and an egg merge. We want to learn how to make use of that principle so that one day we can deliver a drug directly to a predetermined place in the body, such as a cancer cell."

He will also bring with him to Chalmers a research group which will be integrated with the biologically oriented work previously led by Bengt Kasemo at the Department of Chemical Physics.

"There will be a broad range of expertise in the group. We are looking forward to working with different researchers at Chalmers, such as physicists, chemists, bioengineers and electrical engineers. The most gratifying aspect of my work is working with young people with a thirst for knowledge. I also hope to make a strong contribution to undergraduate education at Chalmers."

Contact and more information: Fredrik Höök +46-31 772 61 09;

Pressofficer Sofie Hebrand;; +46 736-79 35 90

Sofie Hebrand | idw
Further information:

Further reports about: AIM Diagnostic Fredrik Höök Pharmaceutical Physics

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>