Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers shine the light of venus to learn how the herpes virus invades cells

17.12.2007
University of Pennsylvania researchers have uncovered an important step in how herpes simplex virus, HSV-1, uses cooperating proteins found on its outer coat to gain entry into healthy cells and infect them. Further, the study’s authors say, they have demonstrated the effectiveness of monitoring these protein interactions using biomolecular complementation.

The findings, published in the Proceedings of the National Academy of Sciences, provide a better understanding of the mechanism that viruses use to conquer healthy cells.

Beginning with the knowledge that HSV-1 glycoprotein gD binds to cell receptors in a healthy cell to begin virus-cell fusion, researchers questioned how other proteins combined or cooperated on the attack. They “tagged” additional HSV-1 proteins with a fluorescent marker to witness the complex battle, thus demonstrating that gD somehow signals to three other herpes proteins -- gB, gH and gL -- to swing into action, continuing fusion and ultimately releasing the viral genome into the cell. Once in the cell, the viral genome takes over and directs the cell to make more virus.

“Watching these proteins interact tells us a lot about HSV and other herpes viruses and how they attack the body,” Roselyn Eisenberg, professor of microbiology in Penn’s School of Veterinary Medicine, said. “The first thing this virus does when it finds a cell is fool the cell into thinking the virus is a welcome guest when it is actually a dangerous intruder. But getting in is not easy. It takes four viral proteins to do it, and they must cooperate with each other in ways that we are only beginning to understand.”

... more about:
»Herpes »Interaction »Viral »shine

Monitoring the interactions required a novel technique. Researchers assumed in their hypothesis that these proteins had to physically interact with each other but could not demonstrate the split-second interaction. Penn researchers hypothesized that the encounter might be too brief and decided to look for ways to “freeze” it long enough to take a snapshot.

Knowing that virus-cell fusion starts when gD binds to a cell receptor, these researchers monitored the remaining protein interactions using bimolecular complementation, a newly developed process that employs, in this case, a protein called Venus. Venus, like the planet, shines brightly against a dark background. Researchers split the yellow Venus protein in two, creating tags which were stitched to either gB or gH, the proteins they believed played a role in fusion. When Venus is split in half, it no longer glows yellow. But when half-Venus-gB and half-Venus-gH combine, even very briefly as they do, the two halves of Venus interact and shine again.

The team used microscopy to look for the viral protein-protein interactions during fusion and thus found that fusion requires proteins gB, gH and gL, called the “core fusion machinery” of all herpes viruses.

“This is a complex mechanism we’re looking at,” Gary Cohen, professor of microbiology in Penn’s School of Dental Medicine, said. “We still have a long way to go but this is a major step forward for us and the field, and now we have a new toy to play with to help us with a whole new set of questions. That is the fun of science: there is always another question. “

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

Further reports about: Herpes Interaction Viral shine

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>