Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wild chimpanzees appear not to regularly experience menopause

Humans may differ from most primates in experiencing a lengthy post-reproductive period

A pioneering study of wild chimpanzees has found that these close human relatives do not routinely experience menopause, rebutting previous studies of captive individuals which had postulated that female chimpanzees reach reproductive senescence at 35 to 40 years of age.

Together with recent data from wild gorillas and orangutans, the finding -- described this week in the journal Current Biology -- suggests that human females are rare or even unique among primates in experiencing a lengthy post-reproductive lifespan.

"We find no evidence that menopause is common among wild chimpanzee populations," says lead author Melissa Emery Thompson, a postdoctoral researcher in anthropology at Harvard University. "While some female chimpanzees do technically outlive their fertility, it's not at all uncommon for individuals in their 40s and 50s -- quite elderly for wild chimpanzees -- to remain reproductively active."

While wild chimpanzees and humans both experience fertility declines starting in the fourth decade of life, most other human organ systems can remain healthy and functional for many years longer, far outstripping the longevity of the reproductive system and giving many women several decades of post-reproductive life.

By contrast, in chimpanzees reproductive declines occur in tandem with overall mortality. A chimpanzee's life expectancy at birth is only 15 years, and just 7 percent of individuals live to age 40. But females who do reach such advanced ages tend to remain fertile to the end, Emery Thompson and her colleagues found, with 47 percent giving birth once after age 40, including 12 percent observed to give birth twice after age 40.

"Fertility in chimpanzees declines at a similar pace to the decline in survival probability, whereas human reproduction nearly ceases at a time when mortality is still very low," the researchers write in Current Biology. "This suggests that reproductive senescence in chimpanzees, unlike in humans, is consistent with the somatic aging process."

In other words, human evolution has resulted in an extended life span without complementary extended reproduction.

"Why hasn't reproduction kept pace with the general increase in human longevity" It may be because there hasn't been anything for natural selection to act on, though there is heritable variation in age of menopause," Emery Thompson says. "However, it may be that the advantage older females gain by assisting their grandchildren outstrips any advantage they might get by reproducing themselves."

The oldest known wild chimpanzee, who died earlier this year at approximately age 63, gave birth to her last offspring just eight years ago, at about 55. Female chimpanzees only give birth every 6 to 8 years, on average, and they generally begin reproducing at age 13 to 15. This makes the chimpanzee reproductive profile much longer and flatter than that of humans, whose procreation is concentrated from age 25 to 35.

Emery Thompson and her colleagues gathered data from six wild chimpanzee populations in Tanzania, Uganda, Guinea, and Gambia. They compared these chimpanzees' fertility patterns to those seen among two well-studied human foraging populations, in Botswana and Paraguay.

Steve Bradt | EurekAlert!
Further information:

Further reports about: Experience Menopause Thompson decline reproductive

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>