Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA regulates cancer stem cells

17.12.2007
One of the biggest stories in cancer research over the past few years has been, unexpectedly, stem cells. Not embryonic stem cells, but tumor stem cells. These mutated cells, which live indefinitely and can seed new tumors, are now suspected of causing many, if not all, cancers. What is worse, these persistent cells are not killed by chemotherapy or other current treatments.

Their survival might explain why tumors frequently recur or spread after treatment. Increasingly, researchers view the challenge of getting rid of these bad seeds as the key to treating cancer far more effectively. However, because they are extremely rare, even in large tumors, studying them has been difficult.

Now, researchers have devised a way to generate large numbers of human breast cancer stem cells in mice and have discovered a genetic switch that regulates critical properties of the cells. The regulator, which belongs to a class of molecules called microRNAs (microRNAs), pushes the stem cells to become more differentiated and less tumorigenic through its ability to switch off particular genes.

“People know that microRNAs are important regulators of cell differentiation, but nobody has shown that they regulate the critical properties of cancer stem cells, or any kind of stem cells,” says Judy Lieberman, an investigator at the Immune Disease Institute and Harvard Medical School professor of pediatrics at Children’s Hospital Boston. Lieberman and Erwei Song, a former postdoc in her lab now working as a breast cancer surgeon at Sun Yat-Sen University in Guangzhou, China, are the senior investigators on the work, which appears in the Dec. 14 issue of Cell.

By showing that microRNAs can rein in tumor stem cells, the work suggests a novel way to target these cells to treat cancer with therapeutic RNAs, a promising new class of medicine under development for many diseases.

In the study, Song and first author Fengyan Yu started working in China to isolate breast cancer stem cells from freshly removed tumors. Because cancer stem cells resist chemotherapy, the researchers predicted that breast tumors from women who had received such treatment before surgery might be enriched with stem-like cells, and their experiments confirmed this idea. In tumors from untreated women, less than 1 in 250 cells had the cell surface markers and growth characteristics of stem cells; in treated tumors, the number rose to 1 in 17.

The finding gave Song and Yu the idea of trying to generate larger quantities of tumor stem cells by growing human breast cancer cells in immunosuppressed mice dosed with a chemotherapeutic agent. After three months of such a regimen, nearly 75 percent of the cells in the retrieved tumors displayed the properties of stem cells: they had the expected cell surface markers, were highly tumorigenic and metastatic in mice, were relatively drug resistant, and could be induced to differentiate into multiple kinds of breast tissue cells.

With a ready supply of cancer stem cells, the researchers were able to measure levels of microRNAs, small gene regulators that are known to influence a gene’s ability to create proteins important for cell growth and differentiation. They found that cancer stem cells contained low amounts of several microRNAs compared to more mature tumor cells or stem cells that had differentiated in culture.

They zeroed in on a tumor-supressing microRNA called let-7. When the team activated let-7 in the stem cells, they lost their ability to self-renew and began to differentiate. The cells also became less able to form tumors in mice or to metastasize. Further studies showed that let-7 did this by switching off two cancer-related genes: the oncogene Ras, and HMG2A, which when switched off caused the cells to differentiate.

If this finding applies to other tumor types, let-7 may offer a unique opportunity to attack tumor stem cells using therapeutic RNA. Delivery of the let-7 RNA to tumors could potentially deplete stem cells by pushing them down the path of differentiation. Using small RNAs to treat disease is a topic Lieberman is quite familiar with—in 2003, her lab was the first to show therapeutic RNAs could work in an animal model of liver disease, and their work has since focused on devising methods for targeting RNAs to all kinds of cells. Yu, now a visiting student in the Lieberman lab, is looking at ways to deliver the let-7 RNA mimics to stem cells.

“One of the fundamental problems of all the therapies that we have is that they are not doing anything to these cells,” Lieberman says. “If those turn out to be the cells that go on and form metastases and are resistant to chemotherapy and are responsible for relapses, and if your therapy isn’t dealing with those cells and is, in fact, selecting for them, that is very worrisome.”

David Cameron | EurekAlert!
Further information:
http://www.hms.harvard.edu
http://www.cbrinstitute.org/labs/lieberman/index.html

Further reports about: Lieberman MicroRNA RNA Regulator Stem differentiate let-7 stem cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>