Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular 'trip switch' shuts down inflammatory response

Like a circuit breaker that prevents electrical wiring from overheating and bringing down the house, a tiny family of three molecules stops the immune system from mounting an out-of-control, destructive inflammatory response against invading pathogens, researchers at the Salk Institute for Biological Studies have found.

Without these critical molecules — known as TAM receptor tyrosine kinases — patrolling immune cells on the look-out for danger would never cease activating the body’s defense system once they find an alien microbe, and the body would suffer, say the Salk investigators, whose findings appear in the Dec. 14 issue of the journal Cell.

“A truism in biology is that if you turn something on, you have to be able to turn it off, and we have found an essential switch that controls immune inflammation,” said the study’s senior investigator, Greg Lemke, Ph.D., a professor in the Molecular Neurobiology Laboratory. “The TAM signaling network represents a previously unknown, yet powerful and broadly acting, pathway for the inhibition of inflammation.”

The findings suggest that researchers might be able to manipulate the switch in ways that would be clinically beneficial, said Carla V. Rothlin, Ph.D., a postdoctoral researcher in the Lemke lab and the study’s lead author. “For example, a drug that inhibited TAMs in the short term could be given along with a therapeutic vaccine, be it one against infectious microorganisms such as anthrax or against cancer cells, in order to help the body mount a better immune response,” she said.

... more about:
»APCs »Cytokine »Switch »TAM »TLR »genes »inflammation »inflammatory »receptor

“Conversely, it may be possible to engage the TAMs early in an immune reaction in order to treat chronic autoimmune diseases such as lupus,” Rothlin said. “Knowing how important TAM receptors are to the control of inflammation in mice will aid our understanding of human immune system disorders.”

The findings are the culmination of a decade of study on TAM receptors by Dr. Lemke’s laboratory. He and his colleagues have discovered that the three TAM genes (Tyro3, Axl, Mer), also known as the Tyro3 family, produce cell surface molecules known as receptor tyrosine kinases, which regulate diverse cellular processes. When the Lemke lab produced mice that lack all three TAM receptors, the animals developed a severe autoimmune reaction, due to a malfunction in a subclass of antigen-presenting cells, or APCs, which provide the body’s first line of defense against disease-causing bacteria and viruses.

APCs constantly patrol the body’s peripheral tissues (such as the skin and lining of the gut) in search of pathogens. When they encounter foreign invaders, they unleash a “cytokine storm” — a wave of chemical messengers that jumpstart the T and B cell response. When the invaders have been successfully battled, the APCs go off duty and lymphocyte numbers and activity taper off.

Without TAM receptors, however, the APCs never shut down after their initial activation, but remain in a state of red-alert. Over time, the ensuing chronic inflammation overwhelms the regulatory mechanisms that normally distinguish “self” from “non-self”, leading to autoimmune diseases such as lupus and rheumatoid arthritis.

In his latest study, supported by the Lupus Research Institute, Lemke and his team explored how TAM receptors give the “all clear” signal to recall the emergency crews and discovered a self-limiting cycle of inflammation in dendritic cells (DCs) - APCs that play a key role in the immune response.

Patrolling DCs use toll-like receptors (TLRs) studded on their surface to “see” pathogens by recognizing their distinctive DNA patterns and configurations of cell surface proteins and sugars. Activation of TLRs leads to an initial burst of cytokines, which is then amplified in a second stage via a feed-forward loop working through cytokine receptors. In other words, TLRs turn on genes inside dendritic cells that then activate more cytokines on the cell surface.

But this same activation pathway also sows the seeds for the later inhibition of both cytokine receptor and TLR signaling. An essential stimulator of inflammation — the type 1 interferon receptor (IFNAR) — and its associated transcription factor, STAT1, turn on expression of Axl, a TAM receptor. Axl and IFNAR then physically bind together and induce the transcription of SOCS genes, whose products are potent inhibitors of both cytokine receptor and TLR signaling pathways.

This is the physical switch, the fuse that is tripped to shut down the inflammatory response, Lemke said. “It’s a cool thing. TAM receptors can’t work without binding to the interferon receptors, so that means that a pro-inflammatory signaling system is co-opted and re-directed to drive the expression of genes that will shut it down.”

“Everything we have tested that stimulates DCs engages this circuit breaker,” Rothlin says. “It’s an essential switch that keeps the immune response in balance.”

Gina Kirchweger | EurekAlert!
Further information:

Further reports about: APCs Cytokine Switch TAM TLR genes inflammation inflammatory receptor

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>