Molecular code broken for drug industry's pet proteins

Membrane proteins are also necessary for cells to recognize each other in the body and for a nervous system, for example, to be formed. Researchers at Stockholm University in Sweden have now managed to reveal the “molecular code” that governs the insertion of proteins in the cell membrane. This work is reported in an article being published on December 13 in the journal Nature.

About 25 percent of all proteins in a cell are found in the cell membrane. Since they regulate all communication between the inside of the cell and the surrounding environment, many membrane proteins are crucial to the life of the cell. Disruptions of their functions often lead to diseases of various kinds. For the drug industry, membrane proteins are high priority “drug targets.”

To be suitable for deployment in the fatty cell membrane, all membrane proteins must be lipophiles (“fat-lovers”). All cells have special machinery for producing and dealing with “fatty” proteins and to see to it that they are deployed in proper manner in the cell membrane. The Stockholm University scientists have developed a method for the detailed study of the properties of a membrane protein that are required for it to be recognized by the cell machinery. A couple of years ago the research team published a first article in Nature in which they managed to show that there is a “fat threshold” that determines whether a protein can be deployed to a membrane or not. In this new study they have fully revealed the molecular code that governs the structure of membrane proteins.

“Now that we have deciphered the code, we can determine with a high degree of certainty which parts of a protein will fasten in the membrane.” says Gunnar von Heijne.

This new knowledge will help researchers all over the world who are trying to understand more about the cell and its membrane, not least in the drug industry.

“Interest in membrane proteins is at a peak right now, and our findings can be key pieces of the puzzle for pharmaceutical chemists working with drug design, for example,” says Gunnar von Hejne.

Name of article
Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature, December 13.

Media Contact

Maria Erlandsson alfa

More Information:

http://www.eks.su.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors