Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Replacing faulty neurons

08.11.2010
An effective method for generating cerebellar neurons could lead to new treatments for movement disorders

Researchers from the RIKEN Center for Developmental Biology, Kobe, have shown that neurons called Purkinje cells can not only be generated from embryonic stem (ES) cells, but can also become fully integrated into existing neuronal circuits when transplanted into the brains of mouse fetuses1.

Purkinje cells are the largest neuronal subtype in the mammalian brain, and their output in the brain region called the cerebellum controls balance, co-ordination and movement.

Yoshiki Sasai and his colleagues cultured ES cells and then treated them at different times with the hormone insulin, the naturally occurring chemical cyclopamine, and a protein called fibroblast growth factor 2, which normally induces the differentiation of Purkinje cells at a specific location in the developing hindbrain.

This treatment caused the ES cells to express genes that are specific for Purkinje cells, and then to differentiate into mature neurons with the extensive, two-dimensional dendritic tree and electrical properties that are characteristic of Purkinje cells. They found that the differentiation of the cells recapitulate the events that take place during neural development. The Purkinje cell-specific genes were expressed in the same sequence as in the embryo, and the immature cells exited the cell cycle, or stopped dividing, on a timescale comparable to that of the neurons in the developing cerebellum.

Sasai and colleagues then separated immature Purkinje cells from the ES cell cultures, and transplanted them into the brains of embryonic mice, injecting approximately 10,000 cells into each animal. They found that the transplanted cells integrated effectively into their proper location within the circuitry of the cerebellum. The majority began to express Purkinje cell genes between 1 to 4 weeks after transplantation, and then differentiated into mature neurons, each with a long axon projecting down into the deep cerebellar nuclei.

The methods of Sasai and his team significantly improve on earlier methods for generating Purkinje cells from ES cell cultures. By successfully reproducing the microenvironment of the developing cerebellum, they generated up to 30-fold more Purkinje cells than previous methods.

These results therefore raise the possibility of developing cell transplantation therapies the cerebellar ataxias, a group of movement disorders characterized by severe motor in-coordination, which occur because of Purkinje cell degeneration.

“As a next step, we are attempting to generate Purkinje cells from human ES cells,” says Sasai. “This technology would be useful in establishing an in vitro disease model for spinocerebellar ataxia, to investigate its pathogenesis and to explore the possibility of gene therapy for this genetic disease.”

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology

Journal information

Muguruma, K., Nishiyama, A., Ono, Y., Miyawaki, H., Mizuhara, E., Hori, S., Kakizuka, A., Obata, K., Yanagawa, Y., Hirano, T. & Sasai, Y. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nature Neuroscience 13, 1171–1180 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6449
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>