Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repeated anaesthesia can affect childrens ability to learn

08.03.2010
There is a link between repeated anaesthesia in children and memory impairment, though physical activity can help to form new cells that improve memory, reveals new research from the Sahlgrenska Academy at the University of Gothenburg, Sweden.
The study has been published in the Journal of Cerebral Blood Flow & Metabolism.
"Paediatric anaesthetists have long suspected that children who are anaesthetised repeatedly over the course of just a few years may suffer from impaired memory and learning," says Klas Blomgren, professor at the Queen Silvia Children's Hospital and researcher at the Sahlgrenska Academy. "This is a theory that is also supported by foreign research."

His research team discovered, by chance, a link between stem cell loss and repeated anaesthesia when working on another study. They wanted to find out what happens to the brain's stem cells when exposed to strong magnetic fields, for example during an MRI scan. The study was carried out using rats and mice, and showed that while the magnetic fields did not have any tangible effects on the animals, the repeated anaesthesia did.

"We found that repeated anaesthesia wiped out a large portion of the stem cells in the hippocampus, an area of the brain that is important for memory," says Blomgren. "The stem cells in the hippocampus can form new nerve and glial cells, and the formation of nerve cells is considered important for our memory function."

Their results could also be linked to impaired memory in animals as they got older. The effect was evident only in young rats or mice that had been anaesthetised, not when adult animals were anaesthetised. This may be because stem cells are more sensitive in an immature brain, even though there are fewer of them as we get older.

"Despite extensive attempts, we have not been able to understand exactly what happens when the stem cells are wiped out," says Blomgren. "We couldn't see any signs of increased cell death, but are speculating that the stem cells lose their ability to divide."

Another treatment that wipes out the brain's stem cells is radiotherapy, which is used with cancer patients. Blomgren and his research team have previously used animal studies to show that physical activity after radiotherapy can result in a greater number of new stem cells and partly replace those that have been lost.

"What's more, the new nerve cells seem to work better in animals that exercise. Now that we know this, we can come up with treatments that prevent or reverse the loss of ostem cells after repeated anaesthesia," says Blomgren, who believes that the findings will lead to greater awareness of the problems and inspire further research into the reasons for the loss of stem cells.

ANAESTHESIA
Anaesthesia is the use of anaesthetics, which are administered to patients by inhalation and/or injection before a surgical procedure. Patients then fall asleep, relax their muscles and feel no pain whatsoever. Often a combination of several different drugs is given via a cannula. These take around 15-20 seconds to work, depending on when the anaesthetic reaches the brain.
Full bibliographic data:
Journal: Journal of Cerebral Blood Flow & Metabolism
Title of article: Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents.

Authors: Changlian Zhu, Jianfeng Gao, Niklas Karlsson, Qian Li, Yu Zhang, Zhiheng Huang, Hongfu Li, H Georg Kuhn and Klas Blomgren

For more information, please contact:
Klas Blomgren, professor of paediatrics at the Queen Silvia Children's Hospital and researcher in the Department of Clinical Neuroscience and Rehabilitation at the Sahlgrenska Academy, tel: +46 31 786 3376, mobile: +46 703 23 3353,e-mail:klas.blomgren@neuro.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.nature.com/jcbfm/journal/vaop/ncurrent/full/jcbfm2009274a.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>