Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repeat act: Parallel selection tweaks many of the same genes to make big and heavy mice

09.05.2012
Max Planck scientists decode genes for a complex characteristic

Organisms are adapted to their environment through their individual characteristics, like body size and body weight. Such complex traits are usually controlled by many genes.


One giant mouse weighs more than six 'mini-mice' of the same age. The biggest mice in the world evolved through targeted breeding over many generations. Scientists can use these animals to identify the genes responsible for body growth. Credit: Lutz Bunger, University of Edinburgh

As a result, individuals show tremendous variations and can also show subtle gradations. Researchers from the Max Planck Institute for Evolutionary Biology in Plön have now investigated how evolution alters such traits through selection. To do this, they examined the genomes of mouse lines that were selected independently of each other for extreme body size. They discovered that a number of genomic regions, or loci, have undergone changes in genes that underlie this genetically complex characteristic. They also discovered many new genes that play a role in the regulation of body weight, which can lead to obesity.

The Plön-based researchers obtained mouse lines that have been specifically selected for extreme body weight for 25 years. The mice, which have been bred for over 150 generations, belong to seven different strains and now weigh two to four times more than mice of normal weight. The Max Planck scientists were able to identify a total of 67 loci on the genome that had changed in the heavy mice. The different strains have become so similar in these regions as a result of the extreme artificial selection pressure, that the genomes of the heavier but unrelated animals were more similar at these loci than with their closely related sibling mouse strains of those with normal weight. This clearly indicates that these loci are involved in the regulation of body weight.

The discovered loci regulate, among other things, energy balance, metabolic processes and growth. The Gpr133 gene, which is expressed in the adrenal gland, is a novel gene and presumably controls body weight through the release of hormones. The second identified gene, Gpr10, which is active in the hypothalamus in the brain, was found to influence appetite and metabolic rates. Accordingly, the team has also identified genes for the regulation of fat cells and for taste and olfactory perception that can affect body weight. Moreover, many of the regions discovered coincide with loci on the human genome that influence body weight. "These genes probably also determine body weight in humans, because size and body weight are such tightly linked processes. This evolutionary connection serves as a nice confirmation," says Frank Chan from the Max Planck Institute for Evolutionary Biology.

Interestingly, the genome of mouse populations living in the wild on remote islands, shaped by natural selection, have also changed in similar ways to the animals bred in the laboratory. For example, on the Faroe Islands and St Kilda off the coast of Scotland, mice populations have evolved to be among the largest mice in the world. The researchers have found that island mice retained little variation specifically at the same genomic loci that changed in the heavy laboratory-bred animal strains. These telltale signs suggest that artificial selection in the laboratory changes the same loci in the genome as natural selection.

Thus, when complex characteristics must adapt to altered environmental conditions, selection affects many responsible genes simultaneously. These then change in parallel and contribute to varying extents to the organism's capacity for adaptation. In this way, the genetic basis of complex traits can be decoded through parallel selection.

Original article: Chan, Y. F. et al. Parallel selection mapping using artificially selected mice reveals body weight control loci.

Current Biology: Volume 22, Issue 9, 8 May 2012, Pages 794 doi:10.1016/j.cub.2012.03.011

Dr. Y. Frank Chan | EurekAlert!
Further information:
http://www.mpg.de

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>