Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing Our Inner Clock with a Two-Inch Fish

21.07.2011
Humans and zebrafish share mechanisms that regulate our circadian system, says TAU researcher

Circadian rhythms — the natural cycle that dictates our biological processes over a 24-hour day — does more than tell us when to sleep or wake. Disruptions in the cycle are also associated with depression, problems with weight control, jet lag and more. Now Prof. Yoav Gothilf of Tel Aviv University's Department of Neurobiology at the George S. Wise Faculty of Life Sciences is looking to the common zebrafish to learn more about how the human circadian system functions.

Prof. Gothilf and his Ph.D. student Gad Vatine, in collaboration with Prof. Nicholas Foulkes of the Karlsruhe Institute for Technology in Germany and Dr. David Klein of the National Institute of Health in Maryland, has discovered that a mechanism that regulates the circadian system in zebrafish also has a hand in running its human counterpart.

The zebrafish discovery provides an excellent model for research that may help to develop new treatments for human ailments such as mental illness, metabolic diseases or sleep disorders. The research appears in the journals PLoS Biology and FEBS Letters.

A miniature model

Zebrafish may be small, but their circadian system is similar to those of human beings. And as test subjects, says Prof. Gothilf, zebrafish also have several distinct advantages: their embryos are transparent, allowing researchers to watch as they develop; their genetics can be easily manipulated; and their development is quick — eggs hatch in two days and the fish become sexually mature at three months old.

Previous research on zebrafish revealed that a gene called Period2, also present in humans, is associated with the fish's circadian system and is activated by light. "When we knocked down the gene in our zebrafish models," says Prof. Gothilf, "the circadian system was lost." This identified the importance of the gene to the system, but the researchers had yet to discover how light triggered gene activity.

The team subsequently identified a region called LRM (Light Responsive Model) within Period2 that explains the phenomenon. Within this region, there are short genetic sequences called Ebox, which mediate clock activity, and Dbox, which confer light-driven expression — the interplay between the two sequences is responsible for light activation. Based on this information, they identified the proteins which bind the Ebox and Dbox and trigger the light-induction of the Period2 gene, a process that is important for synchronization of the circadian system.

To determine whether a similar mechanism may exist in humans, Prof. Gothilf and his fellow researchers isolated and tested the human LRM and inserted it into zebrafish cells. In these fish cells, the human LRM behaved in exactly the same way, activating Period2 when exposed to light — and unveiling a fascinating connection between humans and the two-inch-long fish.

Shedding new light on circadian systems and the brain

Zebrafish and humans could have much more in common, Prof. Gothilf says, leading to breakthroughs in human medicine. Unlike rats and mice but like human beings, zebrafish are diurnal — awake during the day and asleep at night — and they have circadian systems that are active as early as two days after fertilization. This provides an opportunity to manipulate the circadian clock, testing different therapies and medications to advance our understanding of the circadian system and how disruptions, whether caused by biology or lifestyle, can best be treated.

Prof. Gothilf believes this model has further application to brain and biomedical research. Researchers can already manipulate the genetic makeup of zebrafish, for example, to make specific neurons and their synapses (the junctions between neurons in the brain) fluorescent — easy to see and track. "Synapses can be actually counted. This kind of accessible model can be used in research into degenerative brain disorders," he notes, adding that several additional research groups at TAU are now using zebrafish to advance their work.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>