Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing Our Inner Clock with a Two-Inch Fish

21.07.2011
Humans and zebrafish share mechanisms that regulate our circadian system, says TAU researcher

Circadian rhythms — the natural cycle that dictates our biological processes over a 24-hour day — does more than tell us when to sleep or wake. Disruptions in the cycle are also associated with depression, problems with weight control, jet lag and more. Now Prof. Yoav Gothilf of Tel Aviv University's Department of Neurobiology at the George S. Wise Faculty of Life Sciences is looking to the common zebrafish to learn more about how the human circadian system functions.

Prof. Gothilf and his Ph.D. student Gad Vatine, in collaboration with Prof. Nicholas Foulkes of the Karlsruhe Institute for Technology in Germany and Dr. David Klein of the National Institute of Health in Maryland, has discovered that a mechanism that regulates the circadian system in zebrafish also has a hand in running its human counterpart.

The zebrafish discovery provides an excellent model for research that may help to develop new treatments for human ailments such as mental illness, metabolic diseases or sleep disorders. The research appears in the journals PLoS Biology and FEBS Letters.

A miniature model

Zebrafish may be small, but their circadian system is similar to those of human beings. And as test subjects, says Prof. Gothilf, zebrafish also have several distinct advantages: their embryos are transparent, allowing researchers to watch as they develop; their genetics can be easily manipulated; and their development is quick — eggs hatch in two days and the fish become sexually mature at three months old.

Previous research on zebrafish revealed that a gene called Period2, also present in humans, is associated with the fish's circadian system and is activated by light. "When we knocked down the gene in our zebrafish models," says Prof. Gothilf, "the circadian system was lost." This identified the importance of the gene to the system, but the researchers had yet to discover how light triggered gene activity.

The team subsequently identified a region called LRM (Light Responsive Model) within Period2 that explains the phenomenon. Within this region, there are short genetic sequences called Ebox, which mediate clock activity, and Dbox, which confer light-driven expression — the interplay between the two sequences is responsible for light activation. Based on this information, they identified the proteins which bind the Ebox and Dbox and trigger the light-induction of the Period2 gene, a process that is important for synchronization of the circadian system.

To determine whether a similar mechanism may exist in humans, Prof. Gothilf and his fellow researchers isolated and tested the human LRM and inserted it into zebrafish cells. In these fish cells, the human LRM behaved in exactly the same way, activating Period2 when exposed to light — and unveiling a fascinating connection between humans and the two-inch-long fish.

Shedding new light on circadian systems and the brain

Zebrafish and humans could have much more in common, Prof. Gothilf says, leading to breakthroughs in human medicine. Unlike rats and mice but like human beings, zebrafish are diurnal — awake during the day and asleep at night — and they have circadian systems that are active as early as two days after fertilization. This provides an opportunity to manipulate the circadian clock, testing different therapies and medications to advance our understanding of the circadian system and how disruptions, whether caused by biology or lifestyle, can best be treated.

Prof. Gothilf believes this model has further application to brain and biomedical research. Researchers can already manipulate the genetic makeup of zebrafish, for example, to make specific neurons and their synapses (the junctions between neurons in the brain) fluorescent — easy to see and track. "Synapses can be actually counted. This kind of accessible model can be used in research into degenerative brain disorders," he notes, adding that several additional research groups at TAU are now using zebrafish to advance their work.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>