Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Repairing Our Inner Clock with a Two-Inch Fish

Humans and zebrafish share mechanisms that regulate our circadian system, says TAU researcher

Circadian rhythms — the natural cycle that dictates our biological processes over a 24-hour day — does more than tell us when to sleep or wake. Disruptions in the cycle are also associated with depression, problems with weight control, jet lag and more. Now Prof. Yoav Gothilf of Tel Aviv University's Department of Neurobiology at the George S. Wise Faculty of Life Sciences is looking to the common zebrafish to learn more about how the human circadian system functions.

Prof. Gothilf and his Ph.D. student Gad Vatine, in collaboration with Prof. Nicholas Foulkes of the Karlsruhe Institute for Technology in Germany and Dr. David Klein of the National Institute of Health in Maryland, has discovered that a mechanism that regulates the circadian system in zebrafish also has a hand in running its human counterpart.

The zebrafish discovery provides an excellent model for research that may help to develop new treatments for human ailments such as mental illness, metabolic diseases or sleep disorders. The research appears in the journals PLoS Biology and FEBS Letters.

A miniature model

Zebrafish may be small, but their circadian system is similar to those of human beings. And as test subjects, says Prof. Gothilf, zebrafish also have several distinct advantages: their embryos are transparent, allowing researchers to watch as they develop; their genetics can be easily manipulated; and their development is quick — eggs hatch in two days and the fish become sexually mature at three months old.

Previous research on zebrafish revealed that a gene called Period2, also present in humans, is associated with the fish's circadian system and is activated by light. "When we knocked down the gene in our zebrafish models," says Prof. Gothilf, "the circadian system was lost." This identified the importance of the gene to the system, but the researchers had yet to discover how light triggered gene activity.

The team subsequently identified a region called LRM (Light Responsive Model) within Period2 that explains the phenomenon. Within this region, there are short genetic sequences called Ebox, which mediate clock activity, and Dbox, which confer light-driven expression — the interplay between the two sequences is responsible for light activation. Based on this information, they identified the proteins which bind the Ebox and Dbox and trigger the light-induction of the Period2 gene, a process that is important for synchronization of the circadian system.

To determine whether a similar mechanism may exist in humans, Prof. Gothilf and his fellow researchers isolated and tested the human LRM and inserted it into zebrafish cells. In these fish cells, the human LRM behaved in exactly the same way, activating Period2 when exposed to light — and unveiling a fascinating connection between humans and the two-inch-long fish.

Shedding new light on circadian systems and the brain

Zebrafish and humans could have much more in common, Prof. Gothilf says, leading to breakthroughs in human medicine. Unlike rats and mice but like human beings, zebrafish are diurnal — awake during the day and asleep at night — and they have circadian systems that are active as early as two days after fertilization. This provides an opportunity to manipulate the circadian clock, testing different therapies and medications to advance our understanding of the circadian system and how disruptions, whether caused by biology or lifestyle, can best be treated.

Prof. Gothilf believes this model has further application to brain and biomedical research. Researchers can already manipulate the genetic makeup of zebrafish, for example, to make specific neurons and their synapses (the junctions between neurons in the brain) fluorescent — easy to see and track. "Synapses can be actually counted. This kind of accessible model can be used in research into degenerative brain disorders," he notes, adding that several additional research groups at TAU are now using zebrafish to advance their work.

George Hunka | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>