Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

24.04.2013
Researchers at Micro Orthopaedics, Zhongnan Hospital of Wuhan University, led by Dr. Ai-xi Yu, have suggested that articular cartilage defects can be repaired by a novel thermo-sensitive injectable hydrogel engineered with gene modified bone marrow mesenchymal stromal cells (BMSCs).

The chitosan and polyvinyl alcohol composite hydrogel containing hTGFâ-1 gene modified BMSCs was injected into rabbits with defective articular cartilage. Sixteen weeks later the defected cartilage regenerated and was proven to be hyaline cartilage. This work can be found in the January 2013 issue of Experimental Biology and Medicine.

"No reliable approach is currently available for complete restoration of damaged articular cartilage", said Dr. Bai-wen Qi, "in this study, CS/PVA gel was combined with rabbit bone marrow stromal cells (BMSCs) transfected with hTGFâ-1 and used to repair rabbit articular cartilage defects and the repair effect was evaluated".

Tissue engineering combined with gene therapy technology has the potential to manage the repair of defective articular cartilage. In this study, through minimally invasive injection methods the authors were able to repair rabbit articular cartilage defects with CS/PVA gel and gene modified BMSCs. Dr. Qi said "CS/PVA gel can be applied to the repair of articular cartilage defects as an injectable material in tissue engineering, and the regenerated cartilage can secrete cartilage matrix and perform the functions of hyaline cartilage. Use of this gel for cartilage repair has advantages such as the minor surgical procedure required, tight bonding with the damaged tissue and lack of rejection".

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "The study by Qi and colleagues is very exciting as it combines tissue engineering and gene therapy approaches to successfully repair defective articular cartilage. The approach should be adaptable in the future to human tissue repair".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com

Ai-Xi Yu | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>