Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repairing articular cartilage defects with an injectable gel engineered with gene modified BMSCs

24.04.2013
Researchers at Micro Orthopaedics, Zhongnan Hospital of Wuhan University, led by Dr. Ai-xi Yu, have suggested that articular cartilage defects can be repaired by a novel thermo-sensitive injectable hydrogel engineered with gene modified bone marrow mesenchymal stromal cells (BMSCs).

The chitosan and polyvinyl alcohol composite hydrogel containing hTGFâ-1 gene modified BMSCs was injected into rabbits with defective articular cartilage. Sixteen weeks later the defected cartilage regenerated and was proven to be hyaline cartilage. This work can be found in the January 2013 issue of Experimental Biology and Medicine.

"No reliable approach is currently available for complete restoration of damaged articular cartilage", said Dr. Bai-wen Qi, "in this study, CS/PVA gel was combined with rabbit bone marrow stromal cells (BMSCs) transfected with hTGFâ-1 and used to repair rabbit articular cartilage defects and the repair effect was evaluated".

Tissue engineering combined with gene therapy technology has the potential to manage the repair of defective articular cartilage. In this study, through minimally invasive injection methods the authors were able to repair rabbit articular cartilage defects with CS/PVA gel and gene modified BMSCs. Dr. Qi said "CS/PVA gel can be applied to the repair of articular cartilage defects as an injectable material in tissue engineering, and the regenerated cartilage can secrete cartilage matrix and perform the functions of hyaline cartilage. Use of this gel for cartilage repair has advantages such as the minor surgical procedure required, tight bonding with the damaged tissue and lack of rejection".

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "The study by Qi and colleagues is very exciting as it combines tissue engineering and gene therapy approaches to successfully repair defective articular cartilage. The approach should be adaptable in the future to human tissue repair".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com

Ai-Xi Yu | EurekAlert!
Further information:
http://www.sebm.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>