Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repair in the Developing Heart

15.10.2008
If the heart becomes diseased during its embryonic/fetal development, it can regenerate itself to such an extent that it is fully functional by birth, provided some of the heart cells remain healthy.

Dr. Jörg-Detlef Drenckhahn of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany and colleagues from Australia were able to demonstrate in female mice that the healthy cells of the heart divide more frequently and thus displace the damaged tissue. "Hopefully, our results will lead to new therapies in the future," he said. (Developmental Cell, 15, 521-533, October 14, 2008)*.

For the heart to be able to beat, it needs energy. If the energy production in the heart cells is disturbed, then the embryo will actually die of heart dysfunction. But if only a portion of the cells is affected, this is not the case: With the aid of the remaining healthy cells, the embryo manages to regenerate the heart.

The scientists switched off a gene (Holocytochrome C synthase, abbreviated Hccs) in the developing hearts of mice - a gene that is essential for energy production. Results showed that the embryos died when all cells in the heart were affected by the defective energy production. However, the animals that still had some healthy myocardial cells survived, and at the time of birth they had a heart that was fully able to function.

The gene Hccs is located on one of the sex chromosomes, the X chromosome. In contrast to male animals who have only one X chromosome, females have two X chromosomes. Some of the altered female mice have an X chromosome with the defective Hccs gene and one with the intact Hccs gene. However, in the cells of the female animals, only one X chromosome is active. Depending on which one is expressed, either healthy or diseased heart cells develop. "At this point in time, the heart of the mice is like a mosaic," Dr. Drenckhahn said. "Half of the cells are healthy, the other half not."

Up until birth, the fetal heart manages to improve the ratio of healthy cells to defective cells from the original 50:50 ratio. The defective cells then only comprise ten percent of the entire heart volume. That is possible because the healthy myocardial cells divide much more frequently than the defective cells. Their percentage in the heart increases so that, at the time of birth, the ratio is large enough to allow the heart of the newborn mouse to beat normally. "But even for a while after birth, the heart is capable of compensatory growth of healthy cardiac cells," Dr. Drenckhahn explained.

Later the heart loses this ability. Thus, after approximately one year, some of the mice (13 percent) died of myocardial insufficiency and almost half developed arrhythmia. Why only some of the mice develop heart problems is still unclear. The scientists, therefore, want to inactivate the gene in adult mice as well in order to investigate its influence.

Furthermore, they want to identify the embryonic/fetal signal substances that stimulate healthy cells to proliferate and inhibit diseased cells. The scientists hope that, in the future, these signal substances may help stimulate the body's own repair mechanisms of the heart, for example after a heart attack or in the case of heart insufficiency.

In 2007 Dr. Drenckhahn received the Oskar Lapp Prize for his research on the repair of the fetal heart.

*Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development

Jörg-Detlef Drenckhahn1,2,3, Quenten P. Schwarz2,9, Stephen Gray1, Adrienne Laskowski4, Helen Kiriazis5, Ziqiu Ming5, Richard P. Harvey6, Xiao-Jun Du5, David R. Thorburn4,7 and Timothy C. Cox1,2,8

1Department of Anatomy & Developmental Biology, Monash University, Wellington Road, Clayton VIC 3800, Melbourne, Australia
2School of Biomedical & Molecular Science, University of Adelaide, North Terrace, Adelaide SA 5005, Adelaide, Australia
3Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
4Murdoch Children's Research Institute, Royal Children´s Hospital, Flemington Road, Parkville VIC 3052, Melbourne, Australia
5Baker Heart Research Institute, Commercial Road, Melbourne VIC 3004, Melbourne, Australia
6Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst NSW 2010, Sydney, Australia
7Department of Paediatrics, University of Melbourne, Parkville VIC 3052, Melbourne, Australia

8Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/de/news/2008/index.html

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>