Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Scientists Unlock Some Key Secrets of Photosynthesis

03.07.2012
Research on the Water Oxidation Reaction in Plants and Bacteria Helps Solve an Important Piece of the Solar Energy Conversion Puzzle; Represents a Major Step Toward a New Generation of Photovoltaics
New research led by chemists in the Baruch ’60 Center for Biochemical Solar Energy Research at Rensselaer Polytechnic Institute is seeking to detail the individual steps of highly efficient reactions that convert sunlight into chemical energy within plants and bacteria.

In a paper published in the recent edition [DOI:10.1039/C2EE21210B] of the Royal Society of Chemistry journal, Energy & Environmental Science, the scientists — led by K. V. Lakshmi, Rensselaer assistant professor of chemistry and chemical biology and scientific lead at the Baruch ’60 Center — have provided important information on a specific portion of the photosynthetic process called photosystem II. It has been a major challenge to directly observe the individual steps of the solar water-splitting reaction that takes place in photosystem II, Lakshmi said. This finding provides new foundational research into how plants efficiently convert energy from the sun and could help inform the development of a new, highly robust, and more efficient generation of solar-energy technologies.

Lakshmi was joined in the research by Rensselaer students Sergey Milikisyants, Ruchira Chatterjee, and Christopher Coates, as well as Faisal H.M. Koua and Professor Jian-Ren Shen of Okayama University in Japan. The research is funded by the Office of Basic Energy Sciences, U.S. Department of Energy.

“The photosynthetic system of plants is nature’s most elaborate nanoscale biological machine,” said Lakshmi. “It converts light energy at unrivaled efficiency of more than 95 percent compared to 10 to 15 percent in the current man-made solar technologies. In order to capture that efficiency in solar energy technology, we must first tackle the basic science of photosynthesis by understanding the chemistry behind its ultra-efficient energy conversion process in nature.”

The new research focuses on the first of two photochemical reactions that plants use to convert solar energy into chemical energy that takes place within photosystem II. Specifically, the researchers studied the binding and activation of the substrate water molecules in the catalytic site of photosystem II. Photosystem II is a protein complex in plants and cyanobacteria that uses photons of light to split water molecules. This is known as the solar oxidation of water. The protons and electrons resulting from this split are then used by the plant to fuel the remaining systems in the photosynthetic process that transforms light into chemical energy.

“Photosystem II is the engine of life,” Lakshmi said. “It performs one of the most energetically demanding reactions known to mankind, splitting water, with remarkable ease and efficiency.”

One of the difficulties in studying photosystem II is that conventional methods have not yet been able to deeply probe the photosystem II complex, according to Lakshmi, and the mechanism of the photochemical reactions must be fully understood before bio-inspired technologies that mimic the natural processes of photosynthesis can effectively be developed.

In the new research, the scientists investigated the catalytic site of photosystem II, referred to as the oxygen-evolving complex. This is part of the system that breaks down the water. It does so in five distinct stages. Only the first two of these stages have been investigated in any detail, according to Lakshmi, because the remaining stages are relatively unstable and quickly change.

To understand the more unstable stages of the process, scientists need advanced scientific tools that can probe these complex systems at the atomic level. For this research, Lakshmi and her colleagues trapped three different species of photosystem II in one of the more unstable stages of the process – the third stage in the oxygen-evolving complex called photochemical S2 intermediate — by using low-temperature illumination of photosystem II. They then analyzed the system using an advanced spectroscopic technique called two-dimensional hyperfine sub-level correlation spectroscopy.

The tool detects the weak magnetic interactions in the catalytic site to uncover the structure and activation of the substrate water molecules in the S2 intermediate of photosystem II. The technology, found in few labs in the world, according to Lakshmi, identified four important groups of hydrogen atoms arising from substrate water molecules within the oxygen-evolving complex. This is a significant step in determining the fate of the water molecules in the solar water oxidation reaction that occurs within photosystem II, Lakshmi said.

“Water is a very stable molecule and it takes four photons of light to split water,” she said. “This is a challenge for chemists and physicists around the world as the four-photon reaction has very stringent requirements.”

The article published in the Royal Society of Chemistry journal Energy & Environmental Science can be found at: http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee21210b

The Baruch ’60 Center for Biochemical Solar Energy Research is an integrated research and education program at Rensselaer that was inaugurated in October 2008 under the auspices of President Shirley Ann Jackson and Thomas R. Baruch ’60, a member of the Rensselaer Board of Trustees. Researchers at the center are working to develop the next generation of solar technology by studying one of the most powerful energy-converting machines in world — plants. Researchers use sophisticated new technologies and techniques that are being developed at the Baruch ’60 Center to understand the energy-converting power of plants and develop new technologies that mimic this extremely efficient natural system.

Published July 2, 2012
Contact: Mary L. Martialay
Phone: (518) 276-2146
E-mail: martim12@rpi.edu

Mary Martialay | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>