Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable hydrogen production becomes reality at winery

07.10.2009
The first demonstration of a renewable method for hydrogen production from wastewater using a microbial electrolysis system is underway at the Napa Wine Company in Oakville. The refrigerator-sized hydrogen generator will take winery wastewater, and using bacteria and a small amount of electrical energy, convert the organic material into hydrogen, according to a Penn State environmental engineer.

"This is a demonstration to prove we can continuously generate renewable hydrogen and to study the engineering factors affecting the system performance," said Bruce E. Logan, Kappe professor of environmental engineering.

"The hydrogen produced will be vented except for a small amount that will be used in a hydrogen fuel cell." Eventually, Napa Wine Company would like to use the hydrogen to run vehicles and power systems.

Napa Wine Company's wastewater comes from cleaning equipment, grape disposal, wine making and other processes. The company already has on-site wastewater treatment and recycling and the partially treated water from the microbial electrolysis system will join other water for further treatment and use in irrigation.

"It is nice that Napa Wine Company offered up their winery and facilities to test this new approach," said Logan. "We chose a winery because it is a natural tourist attraction. People go there all the time to experience wine making and wine, and now they can also see a demonstration of how to make clean hydrogen gas from agricultural wastes."

The demonstration microbial electrolysis plant is a continuous flow system that will process about 1,000 liters of wastewater a day. Microbial electrolysis cells consist of two electrodes immersed in liquid. Logan uses electrode pairs consisting of one carbon anode and one stainless steel cathode in his system rather than an electrode coated with a precious metal like platinum or gold. Replacing precious metals will keep down costs. The wastewater enters the cell where naturally occurring bacteria convert the organic material into electrical current. If the voltage produced by the bacteria is slightly increased, hydrogen gas is produced electrochemically on the stainless steel cathode.

The demonstration plant is made up of 24 modules. Each module has six pairs of electrodes.

"The composition of the wastewater will change throughout the year," said Logan. "Now it is likely to be rather sugary, but later it may shift more toward the remnants of the fermentation process."

The bacteria that work in the electrolysis cells will consume either of these organic materials.

The project is supported by Air Products & Chemicals, Inc., The Water Environmental Research Foundation Paul L. Busch Award and other donors. Brown & Caldwell, an environmental engineering consulting firm, was contracted to build the demonstration plant. The Napa Wine Company is donating its facilities and wastewater for the demonstration.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>