Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable hydrogen production becomes reality at winery

07.10.2009
The first demonstration of a renewable method for hydrogen production from wastewater using a microbial electrolysis system is underway at the Napa Wine Company in Oakville. The refrigerator-sized hydrogen generator will take winery wastewater, and using bacteria and a small amount of electrical energy, convert the organic material into hydrogen, according to a Penn State environmental engineer.

"This is a demonstration to prove we can continuously generate renewable hydrogen and to study the engineering factors affecting the system performance," said Bruce E. Logan, Kappe professor of environmental engineering.

"The hydrogen produced will be vented except for a small amount that will be used in a hydrogen fuel cell." Eventually, Napa Wine Company would like to use the hydrogen to run vehicles and power systems.

Napa Wine Company's wastewater comes from cleaning equipment, grape disposal, wine making and other processes. The company already has on-site wastewater treatment and recycling and the partially treated water from the microbial electrolysis system will join other water for further treatment and use in irrigation.

"It is nice that Napa Wine Company offered up their winery and facilities to test this new approach," said Logan. "We chose a winery because it is a natural tourist attraction. People go there all the time to experience wine making and wine, and now they can also see a demonstration of how to make clean hydrogen gas from agricultural wastes."

The demonstration microbial electrolysis plant is a continuous flow system that will process about 1,000 liters of wastewater a day. Microbial electrolysis cells consist of two electrodes immersed in liquid. Logan uses electrode pairs consisting of one carbon anode and one stainless steel cathode in his system rather than an electrode coated with a precious metal like platinum or gold. Replacing precious metals will keep down costs. The wastewater enters the cell where naturally occurring bacteria convert the organic material into electrical current. If the voltage produced by the bacteria is slightly increased, hydrogen gas is produced electrochemically on the stainless steel cathode.

The demonstration plant is made up of 24 modules. Each module has six pairs of electrodes.

"The composition of the wastewater will change throughout the year," said Logan. "Now it is likely to be rather sugary, but later it may shift more toward the remnants of the fermentation process."

The bacteria that work in the electrolysis cells will consume either of these organic materials.

The project is supported by Air Products & Chemicals, Inc., The Water Environmental Research Foundation Paul L. Busch Award and other donors. Brown & Caldwell, an environmental engineering consulting firm, was contracted to build the demonstration plant. The Napa Wine Company is donating its facilities and wastewater for the demonstration.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>