Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable hydrogen production becomes reality at winery

07.10.2009
The first demonstration of a renewable method for hydrogen production from wastewater using a microbial electrolysis system is underway at the Napa Wine Company in Oakville. The refrigerator-sized hydrogen generator will take winery wastewater, and using bacteria and a small amount of electrical energy, convert the organic material into hydrogen, according to a Penn State environmental engineer.

"This is a demonstration to prove we can continuously generate renewable hydrogen and to study the engineering factors affecting the system performance," said Bruce E. Logan, Kappe professor of environmental engineering.

"The hydrogen produced will be vented except for a small amount that will be used in a hydrogen fuel cell." Eventually, Napa Wine Company would like to use the hydrogen to run vehicles and power systems.

Napa Wine Company's wastewater comes from cleaning equipment, grape disposal, wine making and other processes. The company already has on-site wastewater treatment and recycling and the partially treated water from the microbial electrolysis system will join other water for further treatment and use in irrigation.

"It is nice that Napa Wine Company offered up their winery and facilities to test this new approach," said Logan. "We chose a winery because it is a natural tourist attraction. People go there all the time to experience wine making and wine, and now they can also see a demonstration of how to make clean hydrogen gas from agricultural wastes."

The demonstration microbial electrolysis plant is a continuous flow system that will process about 1,000 liters of wastewater a day. Microbial electrolysis cells consist of two electrodes immersed in liquid. Logan uses electrode pairs consisting of one carbon anode and one stainless steel cathode in his system rather than an electrode coated with a precious metal like platinum or gold. Replacing precious metals will keep down costs. The wastewater enters the cell where naturally occurring bacteria convert the organic material into electrical current. If the voltage produced by the bacteria is slightly increased, hydrogen gas is produced electrochemically on the stainless steel cathode.

The demonstration plant is made up of 24 modules. Each module has six pairs of electrodes.

"The composition of the wastewater will change throughout the year," said Logan. "Now it is likely to be rather sugary, but later it may shift more toward the remnants of the fermentation process."

The bacteria that work in the electrolysis cells will consume either of these organic materials.

The project is supported by Air Products & Chemicals, Inc., The Water Environmental Research Foundation Paul L. Busch Award and other donors. Brown & Caldwell, an environmental engineering consulting firm, was contracted to build the demonstration plant. The Napa Wine Company is donating its facilities and wastewater for the demonstration.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>