Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renewable and Clean

24.09.2010
New kind of fuel cell delivers energy and fine chemicals with no waste from renewable raw materials

The concept of converting renewable raw materials so cleverly that the same process simultaneously produces both energy and industrially desirable chemicals has been high on the wish-list for those who seek environmentally friendly and resource-saving chemistry.

The process should also not release any carbon dioxide. In the journal Angewandte Chemie, Hansjörg Grützmacher, Francesco Vizza, and Claudio Bianchini and their co-workers from the ETH in Zürich (Switzerland) and the Consiglio Nazionale delle Ricerche (CNR) in Sesto Fiorentino (Italy) have now introduced a new kind of fuel cell: an organometallic fuel cell that efficiently converts alcohols and sugars into carboxylic acids.

Differing from established alcohol fuel cells—the direct alcohol fuel cell and the enzymatic biofuel cell—the organometallic fuel cell (OMFC) works in a completely different way. The secret behind its success is a special molecular complex of rhodium metal that functions as an anode catalyst. The scientists deposited the complex onto a carbon powder support. The interesting thing is that the active catalyst forms during the chemical reaction, and changes step-by-step throughout the catalytic cycle. In this way, a single metal complex forms different catalysts that are each specific for an individual reaction step: the conversion of an alcohol (e.g. ethanol) into the corresponding aldehyde, making the aldehyde into the corresponding carboxylic acid (e.g. acetic acid), and transferring protons (H+) and electrons. As well as alcohols, this system can also convert sugars such as glucose in the same way.

The researchers hope that their new approach could turn out to be a breakthrough in fuel-cell technology. A particular advantage of their new method is that molecular metal complexes are soluble in various solvents, which allows them to be very finely dispersed over very small surfaces. In addition, they provide a very high power density. This could be a way to further miniaturize fuel cells for use as power sources for biological applications like heart pacemakers and biosensors, as well as for the in-vivo monitoring of metabolic processes.

Through the right combination of a tailored molecular catalyst structure and a suitable support material, it could be possible to develop future fuel cells that very selectively convert starting materials with multiple alcohol groups into valuable premium chemicals without the generation of waste materials. This task is very difficult to accomplish by traditional methods.

Author: Hansjörg Grützmacher, ETH Zürich (Switzerland), http://www.gruetzmacher.ethz.ch/people/hansjoerg

Title: A Biologically Inspired Organometallic Fuel Cell (OMFC) That Converts Renewable Alcohols into Energy and Chemicals

Angewandte Chemie International Edition 2010, 49, No. 40, 7229–7233, Permalink to the article: http://dx.doi.org/10.1002/anie.201002234

Hansjörg Grützmacher | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.gruetzmacher.ethz.ch/people/hansjoerg
http://dx.doi.org/10.1002/anie.201002234

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>