Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing genes without a trace

30.09.2015

DNA repair mechanism manipulated to delete genes without leaving a scar

Genes may now be deleted without creating a scar in certain strains of Escherichia coli and other microorganisms, thanks to researchers at Agency for Science, Technology and Research (A*STAR) in Singapore [1]. The technique makes it easier to string together several genetic engineering steps without interference caused by a deletion scar.


A*STAR researchers have successfully deleted genes from Escherichia coli without leaving a scar.

© Eraxion/iStock/Thinkstock

Scientists currently delete genes by manipulating a process known as homologous recombination. Nucleotide sequences change places with the target gene during homologous recombination and are left behind as a genetic scar, undermining the effectiveness of subsequent deletions. As scars accumulate, the recombination process is more likely to recognize them than the target gene, disrupting the deletion attempt.

The scar-free deletion trick developed by Hua Zhao and colleagues at the A*STAR Institute of Chemical and Engineering Sciences utilizes a natural DNA repair mechanism. Gene duplication events or errors during replication occasionally lead to the formation of a mirrored DNA sequence known as an inverted repeat.

Since the repeated segments in an inverted repeat are complementary, they bind to each other and form a loop structure. While short loops have a biological role, longer loops can damage the genome and are therefore cut out by repair machinery.

“The key insight was the extreme instability of inverted repeats in the E. coli genome, which we and others observed. That prompted us to explore its application in gene deletion,” says Zhao.

To delete a gene, Zhao’s team prepares a DNA fragment, which includes an inverted repeat of part of the target gene. They then insert the fragment into the genome adjacent to the gene. The inverted repeats form a loop, and the repair machinery swoops in to snip them out. Since the repair process does not always happen, the team also engineers a selection marker into the fragment, enabling them to detect colonies in which it has been cut out.

Zhao’s team successfully repeated their method on three different E. coli genes. They also tested inverted repeats of different lengths to determine which worked best. While shorter repeats were less likely to be excised, longer repeats did not integrate into the genome as often.

Engineering E. coli to produce biochemicals often involves the deletion of multiple genes. According to Zhao, approaches presently only allow four genes to be deleted in sequence. “After that, further deletions create trouble because of recombination between the deletion scars. Our new method doesn’t introduce scars, so recombination won’t be a problem for multiple deletions.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Reference

[1] Tear, C. Y., Lim, C. & Zhao, H. Excision of unstable artificial gene-specific inverted repeats mediates scar-free gene deletions in Escherichia coli. Applied Biochemistry and Biotechnology 175, 1858–1867 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

Further reports about: A*STAR DNA fragment E coli Escherichia coli dna genes genetic engineering

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>