Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Removing genes without a trace


DNA repair mechanism manipulated to delete genes without leaving a scar

Genes may now be deleted without creating a scar in certain strains of Escherichia coli and other microorganisms, thanks to researchers at Agency for Science, Technology and Research (A*STAR) in Singapore [1]. The technique makes it easier to string together several genetic engineering steps without interference caused by a deletion scar.

A*STAR researchers have successfully deleted genes from Escherichia coli without leaving a scar.

© Eraxion/iStock/Thinkstock

Scientists currently delete genes by manipulating a process known as homologous recombination. Nucleotide sequences change places with the target gene during homologous recombination and are left behind as a genetic scar, undermining the effectiveness of subsequent deletions. As scars accumulate, the recombination process is more likely to recognize them than the target gene, disrupting the deletion attempt.

The scar-free deletion trick developed by Hua Zhao and colleagues at the A*STAR Institute of Chemical and Engineering Sciences utilizes a natural DNA repair mechanism. Gene duplication events or errors during replication occasionally lead to the formation of a mirrored DNA sequence known as an inverted repeat.

Since the repeated segments in an inverted repeat are complementary, they bind to each other and form a loop structure. While short loops have a biological role, longer loops can damage the genome and are therefore cut out by repair machinery.

“The key insight was the extreme instability of inverted repeats in the E. coli genome, which we and others observed. That prompted us to explore its application in gene deletion,” says Zhao.

To delete a gene, Zhao’s team prepares a DNA fragment, which includes an inverted repeat of part of the target gene. They then insert the fragment into the genome adjacent to the gene. The inverted repeats form a loop, and the repair machinery swoops in to snip them out. Since the repair process does not always happen, the team also engineers a selection marker into the fragment, enabling them to detect colonies in which it has been cut out.

Zhao’s team successfully repeated their method on three different E. coli genes. They also tested inverted repeats of different lengths to determine which worked best. While shorter repeats were less likely to be excised, longer repeats did not integrate into the genome as often.

Engineering E. coli to produce biochemicals often involves the deletion of multiple genes. According to Zhao, approaches presently only allow four genes to be deleted in sequence. “After that, further deletions create trouble because of recombination between the deletion scars. Our new method doesn’t introduce scars, so recombination won’t be a problem for multiple deletions.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences


[1] Tear, C. Y., Lim, C. & Zhao, H. Excision of unstable artificial gene-specific inverted repeats mediates scar-free gene deletions in Escherichia coli. Applied Biochemistry and Biotechnology 175, 1858–1867 (2015).

Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:

Further reports about: A*STAR DNA fragment E coli Escherichia coli dna genes genetic engineering

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>