Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing a protein enhances defense against bacteria in CGD mice

02.08.2013
NIH study also suggests an alternative, adjunct approach to drug-resistant staph infections

Deletion of a protein in white blood cells improves their ability to fight the bacteria staphylococcus aureus and possibly other infections in mice with chronic granulomatous disease (CGD), according to a National Institutes of Health study. CGD, a genetic disorder also found in people, is marked by recurrent, life-threatening infections. The study's findings appear online in The Journal of Clinical Investigation.

A team of researchers from NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) compared three groups: CGD-afflicted mice with the protein Olfm4; CGD-afflicted mice in which the protein had been deleted, and healthy mice in which the protein had been deleted. Olfm4, also known as olfactomedin 4, is sometimes helpful in limiting tissue damage but can also hinder white blood cells' ability to kill bacteria.

The researchers found that the white blood cells in mice without the protein could better withstand staphylococcus aureus infection, a major threat to patients with CGD.

"Although treatment for CGD has greatly improved over the past several years, the disease remains challenging," said Dr. Wenli Liu, staff scientist and lead author. "Our research suggests a novel strategy that might pave the way toward developing new treatments to fight against common and often deadly infections."

The results also suggest another potential method to treat methicillin-resistant staphylococcus aureus (MRSA) and other drug-resistant bacteria in patients without CGD, used alongside other therapies. MRSA is a strain of bacteria that has become resistant to antibiotics most often used to treat staph infections. Most commonly contracted in hospitals, MRSA represents a significant public health threat.

"Over the years, MRSA and other bacteria have evolved to be resistant to many antibiotics," said Griffin P. Rodgers, M.D., NIDDK director and study lead. "This study suggests an alternative approach to combat infection by strengthening white blood cell capabilities from within the cells, in addition to resorting to traditional antibiotic treatment."

The research group is now investigating how changing Olfm4 levels in human cells enhances immunity to and from a variety of drug-resistant bacteria. The findings may put researchers closer to developing drug treatment for people, possibly through development of an antibody or small molecule that could inhibit Olfm4 activity.

The study was supported by the Intramural Research Program at NIDDK. Administrative and technical support were provided by the National Heart, Lung, and Blood Institute and the National Institute of Allergy and Infectious Diseases, both part of NIH.

The NIDDK, a component of NIH, conducts and supports research on diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition and obesity; and kidney, urologic and hematologic diseases. Spanning the full spectrum of medicine and afflicting people of all ages and ethnic groups, these diseases encompass some of the most common, severe and disabling conditions affecting Americans. For more information about the NIDDK and its programs, see http://www.niddk.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Krysten Carrera | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>