Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reject watermelons -- the newest renewable energy source

26.08.2009
Watermelon juice can be a valuable source of biofuel. Researchers writing in BioMed Central's open access journal Biotechnology for Biofuels have shown that the juice of reject watermelons can be efficiently fermented into ethanol.

Wayne Fish worked with a team of researchers at the USDA-Agricultural Research Service's South Central Agricultural Research Laboratory in Lane, Oklahoma, US, to evaluate the biofuel potential of juice from 'cull' watermelons – those not sold due to cosmetic imperfections, and currently ploughed back into the field.

He said, "About 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen. We've shown that the juice of these melons is a source of readily fermentable sugars, representing a heretofore untapped feedstock for ethanol biofuel production".

As well as using the juice for ethanol production, either directly or as a diluent for other biofuel crops, Fish suggests that it can be a source of lycopene and L-citrulline, two 'nutraeuticals' for which enough demand currently exists to make extraction economically worthwhile. After these compounds have been removed from the 'cull' juice, it can still be fermented into ethanol.

The researchers conclude, "At a production ratio of ~0.4 g ethanol/g sugar, as measured in this study, approximately 220 L/ha of ethanol would be produced from cull watermelons".

1. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production
Wayne W Fish, Benny D Bruton and Vincent M Russo
Biotechnology for Biofuels (in press)
2. Biotechnology for Biofuels is an open access, peer-reviewed online journal featuring high-quality studies describing technological and operational advances in the production of biofuels from biomass. Biotechnology for Biofuels emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the production of fuels from lignocellulosic biomass and any related economic, environmental and policy issues.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://www.biotechnologyforbiofuels.com/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>