Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reject watermelons -- the newest renewable energy source

26.08.2009
Watermelon juice can be a valuable source of biofuel. Researchers writing in BioMed Central's open access journal Biotechnology for Biofuels have shown that the juice of reject watermelons can be efficiently fermented into ethanol.

Wayne Fish worked with a team of researchers at the USDA-Agricultural Research Service's South Central Agricultural Research Laboratory in Lane, Oklahoma, US, to evaluate the biofuel potential of juice from 'cull' watermelons – those not sold due to cosmetic imperfections, and currently ploughed back into the field.

He said, "About 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen. We've shown that the juice of these melons is a source of readily fermentable sugars, representing a heretofore untapped feedstock for ethanol biofuel production".

As well as using the juice for ethanol production, either directly or as a diluent for other biofuel crops, Fish suggests that it can be a source of lycopene and L-citrulline, two 'nutraeuticals' for which enough demand currently exists to make extraction economically worthwhile. After these compounds have been removed from the 'cull' juice, it can still be fermented into ethanol.

The researchers conclude, "At a production ratio of ~0.4 g ethanol/g sugar, as measured in this study, approximately 220 L/ha of ethanol would be produced from cull watermelons".

1. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production
Wayne W Fish, Benny D Bruton and Vincent M Russo
Biotechnology for Biofuels (in press)
2. Biotechnology for Biofuels is an open access, peer-reviewed online journal featuring high-quality studies describing technological and operational advances in the production of biofuels from biomass. Biotechnology for Biofuels emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the production of fuels from lignocellulosic biomass and any related economic, environmental and policy issues.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://www.biotechnologyforbiofuels.com/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>