Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reining in Nicotine Use

12.05.2011
Midbrain Habenula Region Plays Key Role in Nicotine Dependence

A person’s vulnerability to nicotine addiction appears to have a genetic basis, at least in part.

A region in the midbrain called the habenula (from Latin: small reins) plays a key role in this process, as Dr. Inés Ibañez-Tallon and her team from the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now shown. They also shed light on the mechanism that underlies addiction to nicotine (Neuron, May,12, 2011, Vol. 70, Issue 3, pp: 522-535; DOI 10.1016/j.neuron.2011.04.013)*.

According to the World Health Organization WHO in Geneva, it is estimated that tobacco use kills more than five million people each year worldwide. Many of them die of lung cancer. “Two years ago, studies indicated that genetic variations in a specific gene cluster are risk factors for nicotine dependence and lung cancer,” Dr. Ibañez-Tallon pointed out. She and her team, together with researchers from the Pasteur Institute in Paris, France and the Russian Academy of Sciences in Moscow, have now elucidated the mechanism underlying this dependence.

They investigated a specific receptor for the neurotransmitter acetylcholine, which is activated by nicotine in smokers and is encoded by this specific gene cluster, consisting of three subunits, that is three genes. “Although this gene cluster is present in the DNA of every cell, the receptor is only expressed in a few restricted areas of the brain. One of them is the habenula in the midbrain,” Dr. Ibañez-Tallon explained.

The MDC researchers investigated this receptor and its subunits in egg cells of the African clawed frog (Xenopus laevis) and in transgenic mice. One of the three genes of the cluster is alpha5. “An important percentage of heavy smokers carry a single mutation in this gene. They are more prone to become addicted to nicotine and to develop lung cancer than individuals without this mutation,” Dr. Ibañez-Tallon said.

Strong Aversion to Nicotine
A second gene in the gene cluster encoding this receptor is beta4. The MDC researchers demonstrated that transgenic mice expressing high levels of the beta4 gene have increased sensitivity to nicotine. These mice have a strong aversion to drinking water containing nicotine.

However, when the researchers expressed the mutated variant of the alpha5 gene via a lentivirus in the habenular brain region of these mice, after only two weeks the mice showed a preference for nicotine. Dr. Ibañez-Tallon and her colleagues conclude that only a balanced activity of these two genes can rein in nicotine use.

*Aversion to Nicotine Is Regulated by the Balanced Activity of b4 and a5 Nicotinic Receptor Subunits in the Medial Habenula
Silke Frahm,1 Marta A. Slimak,1 Leiron Ferrarese,1 Julio Santos-Torres,1 Beatriz Antolin-Fontes,1 Sebastian Auer,1 Sergey Filkin,3 Stéphanie Pons,5 Jean-Fred Fontaine,2 Victor Tsetlin,3 Uwe Maskos,4,5 and Inés Ibañez-Tallon1,*
1Department of Molecular Neurobiology, Max-Delbrück-Centrum, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
2Computational Biology and Data Mining Group, Max-Delbrück-Centrum, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
3Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
4Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, F-75724 Paris cedex 15, France
5CNRS, URA2182, F-75724 Paris cedex 15, France
*Correspondence: ibanezi@mdc-berlin.de
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
Weitere Informationen:
http://www.who.int/tobacco/statistics/tobacco_atlas/en/
http://www.who.int/tobacco/mpower/2009/a2_gtcr_report_summary.pdf
http://www.nature.com/nature/journal/v471/n7340/full/nature09797.html
http://www.cell.com/neuron/home

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>