Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reindeer see a weird and wonderful world of ultraviolet light

26.05.2011
Researchers have discovered that the ultraviolet (UV) light that causes the temporary but painful condition of snow blindness in humans is life-saving for reindeer in the arctic.

A BBSRC-funded team at UCL has published a paper today (12 May) in the Journal of Experimental Biology that shows that this remarkable visual ability is part of the reindeer's unique adaptation to the extreme arctic environment where they live. It allows them to take in live-saving information in conditions where normal mammalian vision would make them vulnerable to starvation, predators and territorial conflict. It also raises the question of how reindeer protect their eyes from being damaged by UV, which is thought to be harmful to human vision.

Lead researcher Professor Glen Jeffery said "We discovered that reindeer can not only see ultraviolet light but they can also make sense of the image to find food and stay safe. Humans and almost all other mammals could never do this as our lenses just don't let UV through into the eye.

"In conditions where there is a lot of UV – when surrounded by snow, for example – it can be damaging to our eyes. In the process of blocking UV light from reaching the retina, our cornea and lens absorb its damaging energy and can be temporarily burned. The front of the eye becomes cloudy and so we call this snow blindness. Although this is normally reversible and plays a vital role to protect our sensitive retinas from potential damage, it is very painful."

Human beings are able to see light with wavelengths ranging from around 700nm, which corresponds to the colour red, right through all the colours of the rainbow in sequence to 400nm, which corresponds to violet. Professor Jeffery and his team tested the reindeer's vision to see what wavelengths they could see and found that they can handle wavelengths down to around 350-320nm, which is termed ultraviolet, or UV, because it exceeds the extreme of the so-called visible spectrum of colours.

The winter conditions in the arctic are very severe; the ground is covered in snow and the sun is very low on the horizon. At times the sun barely rises in the middle of the day, making it dark for most of the time. Under these conditions light is scattered such that the majority of light that reaches objects is blue or UV. In addition to this, snow can reflect up to 90% of the UV light that falls on it.

Professor Jeffery continued "When we used cameras that could pick up UV, we noticed that there are some very important things that absorb UV light and therefore appear black, contrasting strongly with the snow. This includes urine - a sign of predators or competitors; lichens - a major food source in winter; and fur, making predators such as wolves very easy to see despite being camouflaged to other animals that can't see UV."

This research raises some interesting questions about the effect of UV on eye health. It had always been assumed that human eyes don't let UV in because of the potential that it will cause damage, just as it does to our skin. In our eyes, UV could damage our sensitive photoreceptors that cannot be replaced. This would lead to irreversible damage to our vision. Arctic reindeer are able to let UV into their eyes and use the information effectively in their environment without suffering any consequences.

Professor Jeffery added "The question remains as to why the reindeer's eyes don't seem to be damaged by UV. Perhaps it's not as bad for eyes as we first thought? Or maybe they have a unique way of protecting themselves, which we could learn from and perhaps develop new strategies to prevent or treat the damage the UV can cause to humans."

Professor Douglas Kell, Chief Executive, BBSRC said "We can learn a lot from studying the fundamental biology of animals and other organisms that live in extreme environments. Understanding their cell and molecular biology, neuroscience, and other aspects of how they work can uncover the biological mechanism that meant they can cope with severe conditions. This knowledge can have an impact on animal welfare and has the potential to be taken forward to new developments that underpin human health and wellbeing."

CONTACT

BBSRC External Relations
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Mike Davies, Tel: 01793 414694, email: mike.davies@bbsrc.ac.uk
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk
NOTES TO EDITORS
Images and an audio slideshow are available to download here: http://workspace.meltwaterdrive.com/share/59E0CFF605
All images are Copyright: Glen Jeffery
The audio slideshow is Copyright: BBSRC
About BBSRC
BBSRC is the UK funding agency for research in the life sciences and the largest single public funder of agriculture and food-related research.

Sponsored by Government, in 2010/11 BBSRC is investing around £470 million in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute, Institute for Animal Health, Institute for Biological, Environmental and Rural Studies (Aberystwyth University), Institute of Food Research, John Innes Centre, The Genome Analysis Centre, The Roslin Institute (University of Edinburgh) and Rothamsted Research.

The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

For more information see: http://www.bbsrc.ac.uk

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>