Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reindeer see a weird and wonderful world of ultraviolet light

26.05.2011
Researchers have discovered that the ultraviolet (UV) light that causes the temporary but painful condition of snow blindness in humans is life-saving for reindeer in the arctic.

A BBSRC-funded team at UCL has published a paper today (12 May) in the Journal of Experimental Biology that shows that this remarkable visual ability is part of the reindeer's unique adaptation to the extreme arctic environment where they live. It allows them to take in live-saving information in conditions where normal mammalian vision would make them vulnerable to starvation, predators and territorial conflict. It also raises the question of how reindeer protect their eyes from being damaged by UV, which is thought to be harmful to human vision.

Lead researcher Professor Glen Jeffery said "We discovered that reindeer can not only see ultraviolet light but they can also make sense of the image to find food and stay safe. Humans and almost all other mammals could never do this as our lenses just don't let UV through into the eye.

"In conditions where there is a lot of UV – when surrounded by snow, for example – it can be damaging to our eyes. In the process of blocking UV light from reaching the retina, our cornea and lens absorb its damaging energy and can be temporarily burned. The front of the eye becomes cloudy and so we call this snow blindness. Although this is normally reversible and plays a vital role to protect our sensitive retinas from potential damage, it is very painful."

Human beings are able to see light with wavelengths ranging from around 700nm, which corresponds to the colour red, right through all the colours of the rainbow in sequence to 400nm, which corresponds to violet. Professor Jeffery and his team tested the reindeer's vision to see what wavelengths they could see and found that they can handle wavelengths down to around 350-320nm, which is termed ultraviolet, or UV, because it exceeds the extreme of the so-called visible spectrum of colours.

The winter conditions in the arctic are very severe; the ground is covered in snow and the sun is very low on the horizon. At times the sun barely rises in the middle of the day, making it dark for most of the time. Under these conditions light is scattered such that the majority of light that reaches objects is blue or UV. In addition to this, snow can reflect up to 90% of the UV light that falls on it.

Professor Jeffery continued "When we used cameras that could pick up UV, we noticed that there are some very important things that absorb UV light and therefore appear black, contrasting strongly with the snow. This includes urine - a sign of predators or competitors; lichens - a major food source in winter; and fur, making predators such as wolves very easy to see despite being camouflaged to other animals that can't see UV."

This research raises some interesting questions about the effect of UV on eye health. It had always been assumed that human eyes don't let UV in because of the potential that it will cause damage, just as it does to our skin. In our eyes, UV could damage our sensitive photoreceptors that cannot be replaced. This would lead to irreversible damage to our vision. Arctic reindeer are able to let UV into their eyes and use the information effectively in their environment without suffering any consequences.

Professor Jeffery added "The question remains as to why the reindeer's eyes don't seem to be damaged by UV. Perhaps it's not as bad for eyes as we first thought? Or maybe they have a unique way of protecting themselves, which we could learn from and perhaps develop new strategies to prevent or treat the damage the UV can cause to humans."

Professor Douglas Kell, Chief Executive, BBSRC said "We can learn a lot from studying the fundamental biology of animals and other organisms that live in extreme environments. Understanding their cell and molecular biology, neuroscience, and other aspects of how they work can uncover the biological mechanism that meant they can cope with severe conditions. This knowledge can have an impact on animal welfare and has the potential to be taken forward to new developments that underpin human health and wellbeing."

CONTACT

BBSRC External Relations
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Mike Davies, Tel: 01793 414694, email: mike.davies@bbsrc.ac.uk
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk
NOTES TO EDITORS
Images and an audio slideshow are available to download here: http://workspace.meltwaterdrive.com/share/59E0CFF605
All images are Copyright: Glen Jeffery
The audio slideshow is Copyright: BBSRC
About BBSRC
BBSRC is the UK funding agency for research in the life sciences and the largest single public funder of agriculture and food-related research.

Sponsored by Government, in 2010/11 BBSRC is investing around £470 million in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

The Babraham Institute, Institute for Animal Health, Institute for Biological, Environmental and Rural Studies (Aberystwyth University), Institute of Food Research, John Innes Centre, The Genome Analysis Centre, The Roslin Institute (University of Edinburgh) and Rothamsted Research.

The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

For more information see: http://www.bbsrc.ac.uk

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>